Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\left(\dfrac{x^2-4}{x^2-1}\right)=0\)
\(\Leftrightarrow20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\left(\dfrac{x-2}{x+1}\right)\left(\dfrac{x+2}{x-1}\right)=0\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x-2}{x+1}=a\\\dfrac{x+2}{x-1}=b\end{matrix}\right.\)thì ta có
\(20a^2-5b^2+48ab=0\)
\(\Leftrightarrow\left(10a-b\right)\left(2a+5b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=10a\\5b=2a\end{matrix}\right.\)
Rồi thế vô giải tiếp đi. Còn lại đơn giản nên tự làm nhé
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
giải pt sau \(\left(\dfrac{x+1}{x-2}\right)^2-3\left(\dfrac{2x-4}{x-4}\right)^2+\dfrac{x+1}{x-4}=0\)
ĐKXĐ: \(x\ne\left\{2;4\right\}\)
Đặt \(\left\{{}\begin{matrix}\dfrac{x+1}{x-2}=a\\\dfrac{x-2}{x-4}=b\end{matrix}\right.\) \(\Rightarrow\dfrac{x+1}{x-4}=ab\)
Phương trình trở thành:
\(a^2-12b^2+ab=0\)
\(\Leftrightarrow a^2+4ab-3ab-12b^2=0\)
\(\Leftrightarrow a\left(a+4b\right)-3b\left(a+4b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\Leftrightarrow\left[{}\begin{matrix}a-3b=0\\a+4b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x+1}{x-2}-\dfrac{3\left(x-2\right)}{x-4}=0\\\dfrac{x+1}{x-2}+\dfrac{4\left(x-2\right)}{x-4}=0\end{matrix}\right.\)
Bạn tự quy đồng và hoàn thành phần còn lại nhé
b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)
=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)
=>x*(x+20)=400*6=2400
=>x^2+20x-2400=0
=>(x+60)(x-40)=0
=>x=-60 hoặc x=40
c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1(nhận)
\(a,3x-12=0\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=4\)
\(b,\left(x-2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(c,\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\left(dkxd:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2-6\left(x-2\right)-x^2}{x^2-4}=0\)
\(\Leftrightarrow x^2+4x+4-6x+12-x^2=0\)
\(\Leftrightarrow-2x+16=0\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\left(tmdk\right)\)
\(a,3x-12=0\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=4.\)
Vậy \(S=\left\{4\right\}\)
\(b,\left(x-2\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=\dfrac{-3}{2}.\end{matrix}\right.\)
Vậy \(S=\left\{2;\dfrac{-3}{2}\right\}\)
\(c,\dfrac{x+2}{x-2}-\dfrac{6}{x+2}=\dfrac{x^2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+4x+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Rightarrow x^2+4x+4-6x+12-x^2=0\)
\(\Leftrightarrow-2x+16=0\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\left(tm\right).\)
Vậy \(S=\left\{8\right\}\)
`20((x-2)/(x+1))^2-5((x+2)/(x-1))^2+48(x^2-4)/(x^2-1)=0(x ne +-1)`
Đặt `(x-2)/(x+1)=a,(x+2)/(x-1)=b`
`pt<=>20a^2-5b^2+48ab=0`
`<=>20a^2+48ab-5b^2=0`
`<=>20a^2-2ab+50ab-5b^2=0`
`<=>2a(a-10b)+5b(10a-b)=0`
`<=>(a-10b)(2a+5b)=0`
Đến đây dễ rồi bạn tự giải tiếp.
ĐKXĐ: x \(\ne\)\(\pm\)1
Ta có: \(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\cdot\dfrac{x^2-4}{x^2-1}=0\)
Đặt: \(\dfrac{x-2}{x+1}=a\) ; \(\dfrac{x+2}{x-1}=b\)
=> ab = \(\dfrac{x^2-4}{x^2-1}\)
Do đó, ta có pt mới: 20a2 - 5b2 + 48ab = 0
<=> 20a2 + 50ab - 2ab - 5b2 = 0
<=> (10a - b)(2a + 5b) = 0
<=> \(\left[{}\begin{matrix}10a=b\\2a=-5b\end{matrix}\right.\)
TH1: 10a = b => \(10\cdot\dfrac{x-2}{x+1}=\dfrac{x+2}{x-1}\)
<=> 10(x - 2)(x - 1) = (x + 2)(x + 1)
<=> 10x2 - 30x + 20 = x2 + 3x + 2
<=> 9x2 - 33x + 18 = 0
<=> 9x2 - 27x - 6x + 18 = 0
<=> (9x - 6)(x - 3) = 0
<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)(tm)
TH2: \(2a=-5b\)=> \(2\cdot\dfrac{x-2}{x+1}=-5\cdot\dfrac{x+2}{x-1}\)
=> (2x - 4)(x - 1) = (-5x - 10)(x + 1)
<=> 2x2 - 6x + 4 = -5x2 - 15x - 10
<=> 7x2 + 9x + 14 = 0
=> pt vn