K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2015

a,450,540

b,450.405.504.540

23 tháng 10 2023

a) A = 4 + 4² + 4³ + ... + 4¹²

= 4.(1 + 4 + 4² + 4³ + ... + 4¹¹) ⋮ 4

Vậy A ⋮ 4

b) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²

= (4 + 4²) + (4³ + 4⁴) + ... + (4¹¹ + 4¹²)

= 4.(1 + 4) + 4³.(1 + 4) + ... + 4¹¹.(1 + 4)

= 4.5 + 4³.5 + ... + 4¹¹.5

= 5.(4 + 4³ + ... + 4¹¹) ⋮ 5

Vậy A ⋮ 5

c) A = 4 + 4² + 4³ + 4⁴ + ... + 4¹²

= (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4¹⁰ + 4¹¹ + 4¹²)

= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4¹⁰.(1 + 4 + 4²)

= 4.21 + 4⁴.21 + ... + 4¹⁰.21

= 21.(4 + 4⁴ + ... + 4¹⁰) ⋮ 21

Vậy A ⋮ 21

17 tháng 10 2021

Giúp với

Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha


 

20 tháng 12 2015

tích từ bài từng câu a , b , ... ra đi

24 tháng 11 2015

Ta co:

A=4+42+43+.....+423+424

=(4+42)+(43 +44

24 tháng 11 2015

Ta có: A = 4 + 4^2 + 4^3 +......+ 4^23+ 4^24

= ﴾4 + 4^2﴿ ﴿ + ﴾4^3 +4^4 ﴿......+ ﴾4^23+ 4^24 ﴿

=﴾4 + 4^2 ﴿.1+﴾4 + 4^2 ﴿.4^2+...+﴾4 + 4^2 ﴿.4^22

=20.﴾1+4^2+...+4^22 ﴿ chia hết cho 20

Ta lại có: A = 4 + 4^2 + 4^3 +......+ 4^23+ 4^24

=﴾4 + 4^2 + 4^3 ﴿+...+﴾4^22+4^23+4^24 ﴿

=﴾4 + 4^2 + 4^3 ﴿.1+...+﴾4 + 4^2 + 4^3 ﴿.4^21

=21.﴾1+...+4^21 ﴿ chia hết cho 21

Vì A chia hết cho 21 và 20 , mà ƯCLN﴾20;21﴿=1

=> A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420

Vậy..

17 tháng 6 2017

CHỨNG MINH S CHIA HẾT CHO 10 :

\(S=4+4^2+...+4^{2004}\)

\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)

\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)

\(S=1.20+4^3.20+...+4^{2003}.20\)

\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )

\(=>dpcm\)

CHỨNG MINH 3S+4 CHIA HẾT CHO 42004

\(S=4+4^2+4^3+...+4^{2004}\)

\(4S=4+4^2+4^3+...+4^{2005}\)

\(3S=4S-S=4^{2005}-4\)

MÀ 42005 CHIA HẾT CHO 42004

\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)

17 tháng 6 2017

\(S=1+4^2+...+4^{2004}\)

\(4S=4+4^3+...+4^{2005}\)

\(\Rightarrow\)\(4S-S=4+4^3+...+4^{2005}-1-4^2-...-4^{2004}\)

\(\Rightarrow\)\(3S=\left(4^3-4^3\right)+...+\left(4^{2004}-4^{2004}\right)-\left(4^{2005}+4-1-4^2\right)\)

\(\Rightarrow\)

31 tháng 12 2021

kko dư nhé dư 0

 

31 tháng 12 2021

trình bài rõ giúp mik