K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2022

a, Thay m=3 vào pt ta có:

\(\left(1\right)\Leftrightarrow x^2-6x+4=0\\ \Leftrightarrow x=3\pm\sqrt{5}\)

b, Để pt có 2 nghiệm thì \(\Delta'\ge0\)

\(\Leftrightarrow\left(-m\right)^2-1.4\ge0\\ \Leftrightarrow m^2-4\ge0\\ \Leftrightarrow\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\\ \Leftrightarrow x^2_1+2x_1+1+x^2_2+2x_2+1=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\\ \Leftrightarrow\left(2m\right)^2-2.4+2.2m=0\\ \Leftrightarrow4m^2+4m-8=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)

 

27 tháng 6 2019

b) Gọi  x 1 ; x 2  lần lượt là 2 nghiệm của phương trình đã cho

Theo hệ thức Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

x 1 2 + x 2 2  - x 1 x 2  = x 1 + x 2 2 - 3x1 x2 = 4 m 2  + 3(4m + 4)

Theo bài ra:  x 1 2 + x 2 2  -  x 1   x 2 =13

⇒ 4m2 + 3(4m + 4) = 13 ⇔ 4m2 + 12m - 1 = 0

∆ m  = 122 -4.4.(-1) = 160 ⇒ ∆ m = 4 10

Phương trình có 2 nghiệm phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với Đề kiểm tra Toán 9 | Đề thi Toán 9 thì phương trình có 2 nghiệm  x 1 ;  x 2  thỏa mãn điều kiện  x 1 2 + x 2 2  -  x 1   x 2  = 13

12 tháng 7 2019

Giả sử phương trình đã cho có 2 nghiệm  x 1  và  x 2 , theo hệ thức Vi-ét ta có:

x 1  +  x 2  = -b/a = -[-2(m + 1)]/1 = 2(m + 1)/1 = 2(m + 1)

x 1 x 2  = c/a = ( m 2  + m - 1)/1 =  m 2  + m – 1

x 1 2 + x 2 2  =  x 1 + x 2 2  – 2 x 1 x 2  = 2 m + 2 2  – 2( m 2  + m – 1)

= 4 m 2  + 8m + 4 – 2 m 2  – 2m + 2 = 2 m 2  + 6m + 6

\(\Delta=\left(-2m\right)^2-4\left(m^2-m+1\right)\)

=4m^2-4m^2+4m-4=4m-4

Để (1) có 2 nghiệm thì 4m-4>=0

=>m>=1

 

NV
3 tháng 5 2021

\(\Delta=\left(m+3\right)^2-4\left(m-1\right)=\left(m+1\right)^2+12>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m-1\end{matrix}\right.\)

\(x_1< -\dfrac{1}{4}< x_2\Leftrightarrow\left(x_1+\dfrac{1}{4}\right)\left(x_2+\dfrac{1}{4}\right)< 0\)

\(\Leftrightarrow x_1x_2+\dfrac{1}{4}\left(x_1+x_2\right)+\dfrac{1}{16}< 0\)

\(\Leftrightarrow m-1+\dfrac{1}{4}\left(m+3\right)+\dfrac{1}{16}< 0\)

\(\Leftrightarrow20m-3< 0\Rightarrow m< \dfrac{3}{20}\)

10 tháng 1 2019

Phương trình (2m - 1) x 2  - 2(m + 4)x + 5m + 2 = 0 ( m   1 2 )

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?

PT cuối cũng bị lỗi.

Bạn xem lại đề!

1 tháng 4 2021

Em sửa rồi ấy ạ

27 tháng 1 2023

Theo định lý Vi-ét, ta có:

 \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=2m-2\end{matrix}\right.\)

Ta có: \(x_1^2+2\left(m+1\right)x_2+2m-2\)\(=x1^2+x_1+x_2.x_2+x_1.x_2\) 

         \(=x_1^2+2x_1x_2+x_2^2=\left(x_1+x_2\right)^2\) \(=\left[2\left(m+1\right)\right]^2=4\left(m+1\right)^2\)

Ta có: \(4\left(m+1\right)^2=9\Leftrightarrow\left(m+1\right)^2=\dfrac{9}{4}\) \(\Leftrightarrow\left[{}\begin{matrix}m+1=\dfrac{3}{2}\\m+1=\dfrac{-3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{2}\\m=\dfrac{-5}{2}\end{matrix}\right.\)

Vậy \(m=\dfrac{1}{2};m=\dfrac{-5}{2}\) thoả mãn yêu cầu đề bài

27 tháng 1 2023

Dấu bằng thứ nhất sau chữ ta có đầu tiên sửa thành: \(x_1^2+\left(x_1+x_2\right).x_2+x_1x_2\)