cho Δ MNP vuông tại M kẻ phân giác PA ( A ϵ MN ) trên PN lấy điểm B sao cho PB = PM gọi C là giao điểm
A, CM Δ PMA = Δ PBA
B, c/m PA là đg trung trực MB
C, ss AM và AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: CN⊥BA tại N
a) Xét ΔBAM vuông tại M và ΔBCN vuông tại N có
BA=BC(ΔABC cân tại B)
\(\widehat{ABM}\) chung
Do đó: ΔBAM=ΔBCN(cạnh huyền-góc nhọn)
b) Ta có: ΔBAM=ΔBCN(cmt)
nên \(\widehat{BAM}=\widehat{BCN}\)(hai góc tương ứng)
hay \(\widehat{NAO}=\widehat{MCO}\)
Ta có: ΔBAM=ΔBCN(cmt)
nên BM=BN(hai cạnh tương ứng)
Ta có: BN+NA=BA(N nằm giữa B và A)
BM+MC=BC(M nằm giữa B và C)
mà BN=MB(cmt)
và BA=BC(cmt)
nên NA=MC
Xét ΔNOA vuông tại N và ΔMOC vuông tại M có
NA=MC(cmt)
\(\widehat{NAO}=\widehat{MCO}\)(cmt)
Do đó: ΔNOA=ΔMOC(cạnh góc vuông-góc nhọn kề)
c) Ta có: ΔNOA=ΔMOC(cmt)
nên OA=OC(hai cạnh tương ứng)
Xét ΔBOA và ΔBOC có
BA=BC(ΔBAC cân tại B)
BO chung
OA=OC(cmt)
Do đó: ΔBOA=ΔBOC(c-c-c)
⇒\(\widehat{ABO}=\widehat{CBO}\)(hai góc tương ứng)
mà tia BO nằm giữa hai tia BA,BC
nên BO là tia phân giác của \(\widehat{ABC}\)(đpcm)
a/
Xét tg vuông ABE và tg vuông HBE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
=> tg ABE = tg HBE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
b/
tg ABE = tg HBE (cmt) => AB = HB => tg BAH cân tại B
\(\widehat{ABE}=\widehat{HBE}\)
=> BE là trung trực của AH (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Xét tg vuông KBH và tg vuông ABC có
\(\widehat{B}\) chung
AB = HB (cmt)
=> tg KBH = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=BC
Xét tg BKE và tg BCE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
BK=BC (cmt)
=> tg BKE = tg BCE (c.g.c) => EK = EC
d/
Xét tg vuông AKE có
AE<EK (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất
Mà EK=EC (cmt)
=> AE<EC
a: PN=10cm
b: Xét ΔPMK vuông tại M và ΔPEK vuông tại E có
PK chung
\(\widehat{MPK}=\widehat{EPK}\)
Do đó: ΔPMK=ΔPEK
c: Xét ΔMKD vuông tại M và ΔEKN vuông tại E có
KM=KE
\(\widehat{MKD}=\widehat{EKN}\)
DO đó: ΔMKD=ΔEKN
Suy ra: KD=KN
d: Ta có: PM+MD=PD
PE+EN=PN
mà PM=PE
và MD=EN
nên PD=PN
hayΔPDN cân tại P
a: Xet ΔAHN và ΔCHM có
AH=CH
góc HAN=góc HCM
AN=CM
=>ΔAHN=ΔCHM
b: Xet ΔAHM và ΔBHN co
AH=BH
góc HAM=góc HBN
AM=BN
=>ΔAHM=ΔBHN