Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác vuông NCA và tam giác vuông MAC có
AC là cạnh huyền chung
góc A = góc C ( tam giác ABC cân tại B )
do đó tam giác NCA = tam giác MAC (cạnh huyền - góc nhọn )
suy ra NA = MC ( 2 cạnh tương ứng )
ta có BA = BC ( tam giác cân )
NA = MC (cmt)
suy ra BA-NA=BC-MC ( vì N nằm giữa B và A , M nằm giữa B và C )
hay BN = BM
xét \(\Delta BNO\)và \(\Delta BMO\)có
BO là cạnh huyền chung
BN = BM (cmt)
do đó \(\Delta BNO=\Delta BMO\)( cạnh huyền - cạnh góc vuông )
suy ra \(\widehat{NBO}=\widehat{MBO}\)( 2 góc tương ứng )
mà tia BO nằm giữa 2 tia BA và BC
suy ra tia Bo là phân giác góc ABC
tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB
ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)
suy ra AM = AN ( 2 cạnh tương ứng )
tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân
b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )
dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )
suy ra BA = Ck ( 2 cạnh tương ứng )
c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân
\(\Delta AHK\)và \(\Delta AMN\) có chung đỉnh
mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN
d) kéo dài HB và CK cắt nhau tại O
nối AO
xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)có
AO là cạnh huyền chung
AH = AK
do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )
e) xét tam giác \(BAD\)và \(\Delta CAD\)có
BA = CA ( tam giác ABC cân tại A )
DA = DC (gt)
AD là canh chung
do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)
phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã
tiếp nhé
suy ra góc BAD = góc CAD ( 2 góc tương ứng )
vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)
ta có BH = CK ( cmt)
và HO = KO (cmt)
suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )
hay BO = OC
xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)
do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)
suy ra góc BAO = góc CAO ( 2 góc tương ứng )
vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)
từ (1) và (2) suy ra A;D;O thẳng hàng
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath
a)
+) Xét \(\Delta\)ABM và \(\Delta\)DCM có :
AM = DM (gt)
góc AMB = góc DMC ( đối đỉnh )
BM = CM (gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c.g.c )
=> AB = DC ( hai canh tương ứng )
+) Do \(\Delta\)ABM = \(\Delta\)DCM (cmt)
=> góc ABM = góc DCM ( hai góc tương ứng )
Mà hai góc này ở vị trí sole trong
=> AB // DC
b) Ta có : AB // CD (cmt)
AB \(\perp\) AC (gt)
=> DC \(\perp\)AC
Xét \(\Delta\)ABC và \(\Delta\)CDA có :
AB = CD (cmt)
góc BAC = góc DCA ( = 90 độ )
AC chung
=> \(\Delta\)ABC = \(\Delta\)CDA ( c.g.c )
=> BC = DA ( hai cạnh tương ứng )
Mà : \(\frac{DA}{2}=MD=MA\Rightarrow MA=\frac{1}{2}BC\) (đpcm)
c) Xét \(\Delta\)BAE và \(\Delta\)BAC có :
AB chung
góc BAE = góc BAC ( = 90 độ )
AE = AC (gt)
=> \(\Delta\)BAE = \(\Delta\)BAC ( c.g.c )
=> BE = BC và góc BEA = góc BCA ( hai góc tương ứng ) (1)
Ta chứng minh được ở phần b) có : AM = \(\frac{1}{2}BC=MC\)
=> \(\Delta\)AMC cân tại M
=> góc MAC = góc MCA
hay góc MAC = góc BCA (2)
Từ (1) và (2) => góc MAC = góc BEC
Mà hai góc này ở vị trí đồng vị
=> AM // BE (đpcm)
d) Câu này mình không hiểu đề lắm !!
Mình nghĩ là : \(\Delta\)ABC cần thêm điều kiện góc B = 30 độ thì sẽ có điều trên.
e) Ta có : BE // AM
=> BE // AD
=> góc EBO = góc DAO
Xét \(\Delta\)EBO và \(\Delta\)DAO có :
BE = AD ( = BC )
góc EBO = góc DAO (cmt)
OB = OA (gt)
=> \(\Delta\)EBO = \(\Delta\)DAO ( c.g.c )
=> góc EOB = góc DOA ( hai góc tương ứng )
Mà : góc EOB + góc EOA = 180 độ
=> góc DOA + góc EOA = 180 độ
hay : góc EOD = 180 độ
=> Ba điểm E, O, D thẳng hàng (đpcm)
Câu hỏi của Vu Duc Manh - Toán lớp 7 - Học toán với OnlineMath
Bạn nào giúp mk với mk cần gấp
Sửa đề: CN⊥BA tại N
a) Xét ΔBAM vuông tại M và ΔBCN vuông tại N có
BA=BC(ΔABC cân tại B)
\(\widehat{ABM}\) chung
Do đó: ΔBAM=ΔBCN(cạnh huyền-góc nhọn)
b) Ta có: ΔBAM=ΔBCN(cmt)
nên \(\widehat{BAM}=\widehat{BCN}\)(hai góc tương ứng)
hay \(\widehat{NAO}=\widehat{MCO}\)
Ta có: ΔBAM=ΔBCN(cmt)
nên BM=BN(hai cạnh tương ứng)
Ta có: BN+NA=BA(N nằm giữa B và A)
BM+MC=BC(M nằm giữa B và C)
mà BN=MB(cmt)
và BA=BC(cmt)
nên NA=MC
Xét ΔNOA vuông tại N và ΔMOC vuông tại M có
NA=MC(cmt)
\(\widehat{NAO}=\widehat{MCO}\)(cmt)
Do đó: ΔNOA=ΔMOC(cạnh góc vuông-góc nhọn kề)
c) Ta có: ΔNOA=ΔMOC(cmt)
nên OA=OC(hai cạnh tương ứng)
Xét ΔBOA và ΔBOC có
BA=BC(ΔBAC cân tại B)
BO chung
OA=OC(cmt)
Do đó: ΔBOA=ΔBOC(c-c-c)
⇒\(\widehat{ABO}=\widehat{CBO}\)(hai góc tương ứng)
mà tia BO nằm giữa hai tia BA,BC
nên BO là tia phân giác của \(\widehat{ABC}\)(đpcm)