Giải phương trình:
||2x|-1|=2x+1
Giúp mk vs!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x-7\right|=4x+1\) (*)
-ĐK: \(4x+1\ge0\Leftrightarrow4x\ge-1\Leftrightarrow x\ge\dfrac{-1}{4}\)
(*)\(\Leftrightarrow2x-7=4x+1\) hay \(2x-7=-4x-1\)
\(\Leftrightarrow2x-4x=1+7\) hay \(2x+4x=-1+7\)
\(\Leftrightarrow-2x=8\) hay \(6x=6\)
\(\Leftrightarrow x=-4\) (loại) hay \(x=1\) (nhận)
-Vậy \(S=\left\{1\right\}\)
Biến đổi vế trá:i : ||2x|-1|=|2|x|-1|
=>|2|x|-1|=2x+1
lời gải thu được: s={-1/2;0}
\(\Rightarrow\orbr{\begin{cases}|2x-1|-1=2x+1\\|2x-1|-1=-2x-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}|2x-1|=2x+2\\|2x-1|=-2x\left(loai\right)\end{cases}}\)
\(\Rightarrow\orbr{\orbr{\begin{cases}2x-1=2x+2\\2x-1=-2x-2\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}0=3\left(voly\right)\\x=\frac{-1}{4}\end{cases}}\)
Vậy \(x=\frac{-1}{4}\)
\(2x-4=6\)
\(\Leftrightarrow2x=10\)
<=> x = 5
Vậy S = {5}
\(2,3-2\left(0,7+2x\right)=3,6-1,7\)
\(\Leftrightarrow2,3-1,4-4x-3,6+1,7=0\)
<=> -1 - 4x = 0
<=> -4x = 1
\(\Leftrightarrow x=-\dfrac{1}{4}\)
Vậy:..
(1)-a)Với mọi x, ta luôn có: \(\left(x+1\right)^2+3>0\Leftrightarrow x^2+1+2x+3>0\Leftrightarrow x^2+2x+4>0\)
\(\sqrt{x^2+2x+4}=2\Leftrightarrow x^2+2x+4=2^2=4\)
\(\Leftrightarrow x^2+2x=0\\\Leftrightarrow\left(x+2\right)x=0\\\Leftrightarrow\left[{}\begin{matrix}x+2=0\Leftrightarrow x=-2\\x=0\end{matrix}\right. \)
➤\(x\in\left\{-2;0\right\}\)
b) \(\left\{{}\begin{matrix}x+2y-1=0\\2x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=1\\4x+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=1-x\\3x=9\Leftrightarrow x=\dfrac{9}{3}=3\end{matrix}\right.\)
Do \(x=3\Leftrightarrow1-x=1-3=-2\) nên ta có: \(2y=1-x=-2\Leftrightarrow y=\dfrac{-2}{2}=-1\)
➤\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
(2): +)ĐK để 2 hàm số cắt nhau là: \(2a\ne1\Leftrightarrow a\ne\dfrac{1}{2}\Leftrightarrow a\ne0,5\)
Ta có hệ phương trình sau: \(\left\{{}\begin{matrix}y=2ax+a+1\\y=x+2\end{matrix}\right.\)
➢Do đó, ta có: \(2ax+a+1=x+2\Leftrightarrow2ax+a-x=2-1=1\)
giải phương trình sau:
a, (3x+1/4)-1/3*(6x+9/5)=1
b, (5/2x+1)-(2x/1-2x)=1-(6-4x/4x^2-1)
giải hộ mk vs ạ
a, \(\left(3x+\frac{1}{4}\right)-\frac{1}{3}\left(6x+\frac{9}{5}\right)=1\)
\(3x+\frac{1}{4}-\frac{6}{3}x-\frac{3}{5}=1\)
\(x-\frac{7}{20}=1\Leftrightarrow x=\frac{27}{20}\)
b,ĐKXĐ : x \(\ne\)-1/2 ; 1/2
\(\left(\frac{5}{2x+1}\right)-\left(\frac{2x}{1-2x}\right)=1-\left(\frac{6-4x}{4x^2-1}\right)\)
\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{6-4x}{4x^2-1}\)
\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{2\left(3-2x\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(\frac{5\left(1-2x\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2x\left(2x+1\right)^2\left(2x-1\right)}{\left(1-2x\right)\left(2x+1\right)^2\left(2x-1\right)}=\frac{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2\left(3-2x\right)\left(2x+1\right)\left(1-2x\right)}{\left(2x+1\right)\left(2x-1\right)^2\left(2x-1\right)\left(1-2x\right)}\)
\(22x-5-20x^2-8x^3=18x-7-8x^3-4x^2\)
lm nốt nha,bị troll rồi ko vt đc nữa.
TH1: Xét cox = 0 ( có p là nghiệm ko)
TH2: Xét \(\cos x\ne0\). Ta chia cả hai vế \(\cos^2x\)
Pt trở thành \(2\tan^2x-4\tan x+4-1\left(1+\tan^2x\right)=0\)
\(\Leftrightarrow\tan^2x-4\tan x+3=0\)
Đặt \(\tan x=t\). Giải pt nữa là xg ạ
\(2sin^2x-4sinx.cosx+4cos^2x=1\)
\(\Leftrightarrow2\left(sin^2x+cos^2x\right)-4sinx.cosx+2cos^2x-1=0\)
\(\Leftrightarrow2-2sin2x+cos2x=0\)
\(\Leftrightarrow2sin2x-cos2x=2\)
\(\Leftrightarrow\sqrt{5}\left(\dfrac{2}{\sqrt{5}}sin2x-\dfrac{1}{\sqrt{5}}cos2x\right)=2\)
\(\Leftrightarrow sin\left(2x-arccos\dfrac{2}{\sqrt{5}}\right)=\dfrac{2}{\sqrt{5}}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-arccos\dfrac{2}{\sqrt{5}}=arcsin\dfrac{2}{\sqrt{5}}+k2\pi\\2x-arccos\dfrac{2}{\sqrt{5}}=\pi-arcsin\dfrac{2}{\sqrt{5}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}arccos\dfrac{2}{\sqrt{5}}+\dfrac{1}{2}arcsin\dfrac{2}{\sqrt{5}}+k\pi\\x=\dfrac{\pi}{2}+\dfrac{1}{2}arccos\dfrac{2}{\sqrt{5}}-\dfrac{1}{2}arcsin\dfrac{2}{\sqrt{5}}+k\pi\end{matrix}\right.\)
a: =>(x-1)(x-2)=0
=>x=1 hoặc x=2
b: TH1: x>=0
=>2x=3x+2
=>x=-2(loại)
TH2: x<0
=>-2x=3x+2
=>-5x=2
=>x=-2/5(nhận)
c: TH1: x>=0
=>2x=3x+4
=>-x=4
=>x=-4(loại)
TH2: x<0
=>-2x=3x+4
=>-5x=4
=>x=-4/5(nhận)
:))))))))))))