so sánh:
A=\(\frac{100^{2017}+1}{100^{2018}+1}\)với B=\(\frac{100^{2018}+1}{100^{2019}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài toán : So sánh A và B
\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)
+) Ta có \(\frac{1}{A}=\frac{1+2018+2018^2+...+2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{2018}{2018^{100}}+\frac{2018^2}{2018^{100}}+...+\frac{2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1\)
\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)
+) Ta có \(\frac{1}{B}=\frac{1+2019+2019^2+...+2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{2019}{2019^{100}}+\frac{2019^2}{2019^{100}}+...+\frac{2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
+) \(\frac{1}{2018^{100}}>\frac{1}{2019^{100}}\)
\(\frac{1}{2018^{99}}>\frac{1}{2019^{99}}\)
.....................................
\(1=1\)
\(\Rightarrow\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1>\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
\(\Rightarrow\frac{1}{A}>\frac{1}{B}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
1) Đặt dãy trên là \(A\)
Theo bài ra ta có :
\(A=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)
2) \(A=\frac{5^{2018}-2017+1}{5^{2018}-2017}=\frac{5^{2018}-2017}{5^{2018}-2017}+\frac{1}{5^{2018}-2017}=1+\frac{1}{5^{2018}-2017}\)( 1 )
\(B=\frac{5^{2018}-2019+1}{5^{2018}-2019}=\frac{5^{2018}-2019}{5^{2018}-2019}+\frac{1}{5^{2018}-2019}=1+\frac{1}{5^{2018}-2019}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(A=1+\frac{1}{5^{2018}-2017}< 1+\frac{1}{5^{2018}-2019}=B\)
\(\Rightarrow A< B\)
Vậy \(A< B.\)
1) Ta có B =
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)= \(\frac{99}{100}\)
=> B < 1 ( chứ không phải \(\frac{1}{2}\) bạn nhé)
Sai thì thôi chứ mk chỉ làm rờ thôi
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
Ta có:
A=\(\frac{100^{2016}+1}{100^{2017}+1}\Rightarrow100A=\frac{100\left(100^{2016}+1\right)}{100^{2017}+1}=\frac{100^{2017}+100}{100^{2017}+1}=\frac{100^{2017}+1+99}{100^{2017}+1}=1+\frac{99}{100^{2017}+1}\)\(B=\frac{100^{2017}+1}{100^{2018}+1}\Rightarrow100B=\frac{100\left(100^{2017}+1\right)}{100^{2018}+1}=\frac{100^{2018}+100}{100^{2018}+1}=\frac{100^{2018}+1+99}{100^{2018}+1}=1+\frac{99}{100^{2018}+1}\)Ta có:
\(\frac{99}{100^{2017}+1}>\frac{99}{100^{2018}+1}\)\(\Rightarrow1+\frac{99}{100^{2017}+1}>1+\frac{99}{100^{2018}+1}\)
\(\Rightarrow100A>100B\Rightarrow A>B\)
E =\(\frac{2018^{99}-1}{2018^{100}-1}\)so sánh với F =\(\frac{2018^{98}-1}{2018^{99}-1}\)
Ai nhanh tk
Ta có \(E=\frac{2018^{99}-1}{2018^{100}-1}\)
\(\Leftrightarrow2018E=\frac{2018^{100}-2018}{2018^{100}-1}\)
\(\Leftrightarrow2018E=1-\frac{2017}{2018^{100}-1}\) (2)
Lại có \(F=\frac{2018^{98}-1}{2018^{99}-1}\)
\(\Leftrightarrow2018F=\frac{2018^{99}-2018}{2018^{99}-1}\)
\(\Leftrightarrow2018F=1-\frac{2017}{2018^{99}-1}\) (2)
Mà \(2018^{100}>2018^{99}>0\)
\(\Leftrightarrow2018^{100}-1>2018^{99}-1\)
\(\Leftrightarrow\frac{2017}{2018^{100}-1}< \frac{2017}{2018^{99}-1}\)
\(\Leftrightarrow-\frac{2017}{2018^{100}-1}>-\frac{2017}{2018^{99}-1}\)
\(\Leftrightarrow1-\frac{2017}{2018-1}>1-\frac{2017}{2018^{99}-1}\) (3)
Từ (1) ;(2) và (3) <=> 2018E > 2018 F > 0
<=> E > F
Vậy E > F
@@ Học tốt
Chiyuki Fujito
K cần tk
`@` `\text {Ans}`
`\downarrow`
`a)`
`13/50 + 9% + 41/100 + 0,24`
`= 0,26 + 0,09 + 0,41 + 0,24`
`= (0,26 + 0,24) + (0,09 + 0,41)`
`= 0,5 + 0,5`
`= 1`
`b)`
`2018 \times 2020 - 1/2017 + 2018 \times 2019`
`= 2018 \times (2020 + 2019) - 1/2017`
`= 2018 \times 4039 - 1/2017`
`= 8150702`
`c)`
`1/2 + 1/6 + 1/12 + 1/20 +1/30 +1/42`
`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{6}-\dfrac{1}{7}\)
`=`\(1-\dfrac{1}{7}\)
`= 6/7`
\(a,\dfrac{13}{50}+9\%+\dfrac{41}{100}+0,24\\ 0,26+0,09+0,41+0,24\\ =\left(0,26+0,24\right)+\left(0,09+0,41\right)\\ =0,5+0,5\\ =1\\ b,2018\times2020-\dfrac{1}{2017}+2018\times2019\\ =2018\times\left(2020+2019\right)-\dfrac{1}{2017}\\ =2018\times4039-\dfrac{1}{2017}\\ =3150702-\dfrac{1}{2017}\\ c,\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\\ =1-\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}.........+\dfrac{1}{6}-\dfrac{1}{7}\\ =1-\dfrac{1}{7}\\ =\dfrac{6}{7}\)
\(A=\frac{100^{2017}+1}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100\cdot\left[100^{2017}+1\right]}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+100}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+1+99}{100^{2018}+1}\)
\(\Rightarrow100A=1+\frac{99}{100^{2018}+1}\)
\(B=\frac{100^{2018}+1}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100\cdot\left[100^{2018}+1\right]}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+100}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+1+99}{100^{2019}+1}\)
\(\Rightarrow100B=1+\frac{99}{100^{2019}+1}\)
Tự so sánh
\(A=\frac{100^{2017}+1}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+100}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+1+99}{100^{2018}+1}\)
\(\Rightarrow100A=\frac{100^{2018}+1}{100^{2018}+1}+\frac{99}{100^{2018}+1}\)
\(\Rightarrow100A=1+\frac{99}{100^{2018}+1}\)(1)
\(B=\frac{100^{2018}+1}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+100}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+1+99}{100^{2019}+1}\)
\(\Rightarrow100B=\frac{100^{2019}+1}{100^{2019}+1}+\frac{99}{100^{2019}+1}\)
\(\Rightarrow100B=1+\frac{99}{100^{2019}+1}\)(2)
Từ (1) và (2) suy ra 100A > 100B hay A > B