\(\frac{100^{2017}+1}{100^{2018}+1}\)với B=\(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

\(A=\frac{100^{2017}+1}{100^{2018}+1}\)

\(\Rightarrow100A=\frac{100\cdot\left[100^{2017}+1\right]}{100^{2018}+1}\)

\(\Rightarrow100A=\frac{100^{2018}+100}{100^{2018}+1}\)

\(\Rightarrow100A=\frac{100^{2018}+1+99}{100^{2018}+1}\)

\(\Rightarrow100A=1+\frac{99}{100^{2018}+1}\)

\(B=\frac{100^{2018}+1}{100^{2019}+1}\)

\(\Rightarrow100B=\frac{100\cdot\left[100^{2018}+1\right]}{100^{2019}+1}\)

\(\Rightarrow100B=\frac{100^{2019}+100}{100^{2019}+1}\)

\(\Rightarrow100B=\frac{100^{2019}+1+99}{100^{2019}+1}\)

\(\Rightarrow100B=1+\frac{99}{100^{2019}+1}\)

Tự so sánh

3 tháng 5 2019

\(A=\frac{100^{2017}+1}{100^{2018}+1}\)

\(\Rightarrow100A=\frac{100^{2018}+100}{100^{2018}+1}\)

\(\Rightarrow100A=\frac{100^{2018}+1+99}{100^{2018}+1}\)

\(\Rightarrow100A=\frac{100^{2018}+1}{100^{2018}+1}+\frac{99}{100^{2018}+1}\)

\(\Rightarrow100A=1+\frac{99}{100^{2018}+1}\)(1)

\(B=\frac{100^{2018}+1}{100^{2019}+1}\)

\(\Rightarrow100B=\frac{100^{2019}+100}{100^{2019}+1}\)

\(\Rightarrow100B=\frac{100^{2019}+1+99}{100^{2019}+1}\)

\(\Rightarrow100B=\frac{100^{2019}+1}{100^{2019}+1}+\frac{99}{100^{2019}+1}\)

\(\Rightarrow100B=1+\frac{99}{100^{2019}+1}\)(2)

Từ (1) và (2) suy ra 100A > 100B hay A > B

21 tháng 6 2019

Bài toán : So sánh A và B

\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)

+) Ta có \(\frac{1}{A}=\frac{1+2018+2018^2+...+2018^{100}}{2018^{100}}\)

                     \(=\frac{1}{2018^{100}}+\frac{2018}{2018^{100}}+\frac{2018^2}{2018^{100}}+...+\frac{2018^{100}}{2018^{100}}\)

                      \(=\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1\)

\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)

+) Ta có \(\frac{1}{B}=\frac{1+2019+2019^2+...+2019^{100}}{2019^{100}}\)

                     \(=\frac{1}{2019^{100}}+\frac{2019}{2019^{100}}+\frac{2019^2}{2019^{100}}+...+\frac{2019^{100}}{2019^{100}}\)

                      \(=\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)

+) \(\frac{1}{2018^{100}}>\frac{1}{2019^{100}}\)

     \(\frac{1}{2018^{99}}>\frac{1}{2019^{99}}\)

     .....................................

     \(1=1\)

\(\Rightarrow\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1>\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)

\(\Rightarrow\frac{1}{A}>\frac{1}{B}\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

4 tháng 5 2018

1) Đặt dãy trên là \(A\)

Theo bài ra ta có :

\(A=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+...+\frac{1}{100.100}\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(đpcm\right)\)

2) \(A=\frac{5^{2018}-2017+1}{5^{2018}-2017}=\frac{5^{2018}-2017}{5^{2018}-2017}+\frac{1}{5^{2018}-2017}=1+\frac{1}{5^{2018}-2017}\)( 1 )

\(B=\frac{5^{2018}-2019+1}{5^{2018}-2019}=\frac{5^{2018}-2019}{5^{2018}-2019}+\frac{1}{5^{2018}-2019}=1+\frac{1}{5^{2018}-2019}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(A=1+\frac{1}{5^{2018}-2017}< 1+\frac{1}{5^{2018}-2019}=B\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)

4 tháng 5 2018

1) Ta có B =

 \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) < \(\frac{1}{1.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)\(\frac{99}{100}\)

=> B < 1 ( chứ không phải \(\frac{1}{2}\) bạn nhé)

Sai thì thôi chứ mk chỉ làm rờ thôi

26 tháng 2 2020

Ta có \(E=\frac{2018^{99}-1}{2018^{100}-1}\)

\(\Leftrightarrow2018E=\frac{2018^{100}-2018}{2018^{100}-1}\)

\(\Leftrightarrow2018E=1-\frac{2017}{2018^{100}-1}\)   (2)

Lại có \(F=\frac{2018^{98}-1}{2018^{99}-1}\)

\(\Leftrightarrow2018F=\frac{2018^{99}-2018}{2018^{99}-1}\)

\(\Leftrightarrow2018F=1-\frac{2017}{2018^{99}-1}\)  (2)

Mà \(2018^{100}>2018^{99}>0\)

\(\Leftrightarrow2018^{100}-1>2018^{99}-1\)

\(\Leftrightarrow\frac{2017}{2018^{100}-1}< \frac{2017}{2018^{99}-1}\)

\(\Leftrightarrow-\frac{2017}{2018^{100}-1}>-\frac{2017}{2018^{99}-1}\)

\(\Leftrightarrow1-\frac{2017}{2018-1}>1-\frac{2017}{2018^{99}-1}\)   (3)

Từ (1) ;(2) và (3) <=> 2018E > 2018 F > 0

<=> E > F 

Vậy E > F

@@ Học tốt

Chiyuki Fujito

K cần tk

16 tháng 4 2017

Vì A < 1

\(\Rightarrow A< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2019}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2018}+1\right)}=\frac{2017^{2017}+1}{2017^{2018}+1}=B\)

Vậy A < B

16 tháng 3 2018

ta có A=\(\frac{2017^{2017}+1}{2017^{2018}+1}\)=> 2017A =\(\frac{2017^{2018}+2017}{2017^{2018}+1}=1+\frac{2016}{2017^{2018}+1}\)(1)

B=\(\frac{2017^{2018}+1}{2017^{2019}+1}\)=> 2017B =\(\frac{2017^{2019}+2017}{2017^{2019}+1}=1+\frac{2016}{2017^{2019}+1}\)(2)

So sánh (1)với (2) ta thấy 2017A>2017B

=>A>B

Vậy A>B

16 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{2017^{2018}+1}{2017^{2019}+1}< \frac{2017^{2018}+1+2016}{2017^{2019}+1+2016}=\frac{2017^{2018}+2017}{2017^{2017}+2017}=\frac{2017\left(2017^{2017}+1\right)}{2017\left(2017^{2016}+1\right)}=A\)

\(\Rightarrow\)\(B< A\) hay \(A>B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

7 tháng 11 2017

Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6

4 tháng 2 2018

lien quan vai