K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

Cộng 2 pt lại ta được

\(x^2+y^2+2xy-4x-4y=-3\)

\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+3=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x+y-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x+y=3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1-y\\x=3-y\end{cases}}\)

THế vào 1 trong 2 pt ban đầu là Ok

19 tháng 5 2017

theo mik thì cứ cộng 2 vế pt là ok nhá,,,tí nó ra hình như là (x+y)^2-4(x+y)=-3 ấy,,kinh ko,,

It feels nobody ever knew me until you knew me
Feels nobody ever loved me until you loved me
Feels nobody ever touched me until you touched me

19 tháng 5 2017

Mình chưa học tới hệ Phương trình

Bạn giải đc ko?

28 tháng 11 2018

a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)

từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được: 

\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)

nhân ra giải phương trình rồi tìm x, tự lm nhé.

b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)

Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé

28 tháng 11 2018

\(\hept{\begin{cases}x^2+2xy-2x-2y+1=0\left(1\right)\\3x^2+xy+4x-y-7=0\left(2\right)\end{cases}}\)

\(\Rightarrow2x^2-xy+6x+y-8=0\)

\(\Leftrightarrow2x^2+\left(6-y\right)+y-8=0\)

Ta có: \(\Delta=\left(6-y\right)^2-4\cdot2\cdot\left(y-8\right)=36-12y+y^2-8y+64=\left(y-10\right)^2\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{y-6+y-10}{4}=\frac{y-8}{2}\Rightarrow y=2x+8\\x=\frac{y-6-y+10}{4}=1\end{cases}}\)

Với từng trường hợp thay vào pt (1) hoặc (2) sẽ ra

20 tháng 4 2019

Dùng delta để chặn

\(pt\left(2\right)\Leftrightarrow x^2+x\left(y-3\right)+y^2-4y+4=0\)

Có \(\Delta=\left(y-3\right)^2-4\left(y^2-4y+4\right)\)

          \(=y^2-6y+9-4y^2+16y-16\)

           \(=-3y^2+10y-7\)

Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow1\le y\le\frac{7}{3}\)

                                         \(\Rightarrow y^2\le\frac{49}{9}\)

Tương tự , pt (2) được viết lại dưới dạng sau

\(y^2+y\left(x-4\right)+x^2-3x+4=0\)

\(\Delta=\left(x-4\right)^2-4\left(x^2-3x+4\right)\)

          \(=x^2-8x+16-4x^2+12x-16\)

        \(=-3x^2+4x\)

Pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow0\le x\le\frac{4}{3}\)

                      \(\Rightarrow x^4\le\frac{256}{81}\)

\(\Rightarrow x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)

Thử lại ta thấy ... (hình như vô nghiệm thì phải )

Dùng cái đầu đi ạ

Đây mà toán lớp 1 à.

24 tháng 1 2019

Chà chà :) toán lớp 1 khó phết chứ đùa :3 phải đi học lại lớp 1 thôi