Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo mik thì cứ cộng 2 vế pt là ok nhá,,,tí nó ra hình như là (x+y)^2-4(x+y)=-3 ấy,,kinh ko,,
It feels nobody ever knew me until you knew me
Feels nobody ever loved me until you loved me
Feels nobody ever touched me until you touched me
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)
từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được:
\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)
nhân ra giải phương trình rồi tìm x, tự lm nhé.
b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé
\(\hept{\begin{cases}x^2+2xy-2x-2y+1=0\left(1\right)\\3x^2+xy+4x-y-7=0\left(2\right)\end{cases}}\)
\(\Rightarrow2x^2-xy+6x+y-8=0\)
\(\Leftrightarrow2x^2+\left(6-y\right)+y-8=0\)
Ta có: \(\Delta=\left(6-y\right)^2-4\cdot2\cdot\left(y-8\right)=36-12y+y^2-8y+64=\left(y-10\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{y-6+y-10}{4}=\frac{y-8}{2}\Rightarrow y=2x+8\\x=\frac{y-6-y+10}{4}=1\end{cases}}\)
Với từng trường hợp thay vào pt (1) hoặc (2) sẽ ra
Dùng delta để chặn
\(pt\left(2\right)\Leftrightarrow x^2+x\left(y-3\right)+y^2-4y+4=0\)
Có \(\Delta=\left(y-3\right)^2-4\left(y^2-4y+4\right)\)
\(=y^2-6y+9-4y^2+16y-16\)
\(=-3y^2+10y-7\)
Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow1\le y\le\frac{7}{3}\)
\(\Rightarrow y^2\le\frac{49}{9}\)
Tương tự , pt (2) được viết lại dưới dạng sau
\(y^2+y\left(x-4\right)+x^2-3x+4=0\)
Có\(\Delta=\left(x-4\right)^2-4\left(x^2-3x+4\right)\)
\(=x^2-8x+16-4x^2+12x-16\)
\(=-3x^2+4x\)
Pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow0\le x\le\frac{4}{3}\)
\(\Rightarrow x^4\le\frac{256}{81}\)
\(\Rightarrow x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)
Thử lại ta thấy ... (hình như vô nghiệm thì phải )
\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)
b,
\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)
Tự xử đoạn còn lại nhé
\(a)\)\(\hept{\begin{cases}2x+3y=5\\x-4y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5-3y}{2}\\x=1+4y\end{cases}\Leftrightarrow}5-3y=2+8y\Leftrightarrow y=\frac{3}{11}}\)
\(\Rightarrow\)\(x=1+4y=1+4.\frac{3}{11}=\frac{23}{11}\)
\(b)\)\(\hept{\begin{cases}x+y=-2\\-2x-3y=9\end{cases}\Leftrightarrow\hept{\begin{cases}-x=y+2\\-x=\frac{9+3y}{2}\end{cases}\Leftrightarrow}2y+4=9+3y\Leftrightarrow y=-5}\)
\(\Rightarrow\)\(x=-y-2=-\left(-5\right)-2=3\)
...
Cộng 2 pt lại ta được
\(x^2+y^2+2xy-4x-4y=-3\)
\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+3=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x+y-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x+y=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1-y\\x=3-y\end{cases}}\)
THế vào 1 trong 2 pt ban đầu là Ok