K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
27 tháng 5 2021

\(A=\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\)

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(6=x+y+z+xy+yz+zx\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)

\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

\(\Leftrightarrow\left(x+y+z-3\right)\left(x+y+z+6\right)\ge0\)

\(\Leftrightarrow x+y+z\ge3\)(vì \(x,y,z>0\)

Ta có: \(\frac{x^3}{y}+y+1\ge3x,\frac{y^3}{z}+z+1\ge3y,\frac{z^3}{x}+x+1\ge3z\)

Suy ra \(A\ge2\left(x+y+z\right)-3\ge2.3-3=3\)

Dấu \(=\)xảy ra khi \(x=y=z=1\).

11 tháng 7 2021

Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)

\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)

11 tháng 7 2021

dòng 3 từ dưới lên là c^3a^3 nhé, mình gõ lỗi xíu

 

NV
11 tháng 7 2021

\(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\)

\(\Rightarrow3\ge3\sqrt[3]{\left(ab.bc.ca\right)^3}=3\left(abc\right)^2\Rightarrow a^2b^2c^2\le1\)

Ta có: \(\dfrac{a^{10}}{b^2c^2}+a^2b^2c^2\ge2a^6\)

Tương tự và cộng lại: \(P+3\left(abc\right)^2\ge2\left(a^6+b^6+c^6\right)\)

\(\Rightarrow P\ge2\left(a^6+b^6+c^6\right)-3a^2b^2c^2\ge2\left[\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\right]-3=3\)

NV
2 tháng 9 2021

\(\sum\dfrac{x^2}{y^2+yz+z^2}\ge\sum\dfrac{x^2}{y^2+\dfrac{y^2+z^2}{2}+z^2}=\dfrac{2}{3}\sum\dfrac{x^2}{y^2+z^2}\ge\dfrac{2}{3}.\dfrac{3}{2}=1\) (BĐT cuối là BĐT Netsbitt)

Câu b là bài IMO 2001 USA, em có thể tìm thấy rất nhiều lời giải

NV
17 tháng 7 2021

Nếu biểu thức là: \(P=\dfrac{x^5}{y^3}+\dfrac{y^5}{z^3}+\dfrac{z^5}{x^3}\) thì đề bài sai

Biểu thức này chỉ có min, không có max 

17 tháng 7 2021

Thầy ơi làm sao để xác định đề bài tìm Max hay Min ạ?

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:

Áp dụng BĐT AM-GM:
$\frac{x^3}{y(x+z)}+\frac{y}{2}+\frac{x+z}{4}\geq \frac{3}{2}x$

Tương tự với các phân thức còn lại, cộng theo vế và rút gọn ta được:

$\Rightarrow P=\sum \frac{x^3}{y(x+z)}\geq \frac{x+y+z}{2}$

Tiếp tục áp dụng AM-GM:

$x+y\geq 2\sqrt{xy}$

$y+z\geq 2\sqrt{yz}$

$x+z\geq 2\sqrt{xz}$

$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1$

$\Rightarrow P\geq \frac{1}{2}$

Vậy $P_{\min}=\frac{1}{2}$ khi $x=y=z=\frac{1}{3}$

 

NV
11 tháng 7 2021

\(\dfrac{x^3}{y\left(x+z\right)}+\dfrac{y}{2}+\dfrac{x+z}{4}\ge\dfrac{3x}{2}\)

Tương tự và cộng lại:

\(P+x+y+z\ge\dfrac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)

11 tháng 7 2021

Ta có :

\(P=\sum\dfrac{x^3}{\sqrt{y^2+3}}\ge\sum\dfrac{x^3}{\sqrt{y^2+xy+yz+zx}}\ge\sum\dfrac{x^3}{\sqrt{\left(x+y\right)\left(z+y\right)}}\\ \overset{Cosi}{\ge}\sum\dfrac{2x^3}{x+2y+z}\ge2\sum\dfrac{\left(x^2\right)^2}{x^2+2xy+xz}\\ \overset{Svacxo}{\ge}2\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(\overset{Cosi}{\ge}\dfrac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{2}\\ \overset{Cosi}{\ge}\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

5 tháng 8 2021

undefinedundefined

5 tháng 8 2021

nếu khó nhìn để mik đánh lại