Cho pt \(x^2-\left(m-1\right)x+m-5=0\) (x là ẩn, m là tham số)
a) Giải PT khi m=2
b) Tìm giá trị của m để pt có 1 nghiệm bằng 2. Tính nghiệm còn lại
c) Chứng tỏ pt luôn có nghiệm với mọi m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,m=4\Leftrightarrow x^2-10x=0\Leftrightarrow x\left(x-10\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\\ b,\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\)
Vậy PT luôn có 2 nghiệm phân biệt với mọi m
a Khi m=1 thì (1) sẽ là x^2+1=0
=>x thuộc rỗng
b: Thay x=1 vào (1),ta được:
1^2-2(m-1)+m^2=0
=>m^2+1-2m+2=0
=>m^2-2m+3=0
=>PTVN
c: Thay x=-3 vào pt, ta được:
(-3)^2-2*(m-1)*(-3)+m^2=0
=>m^2+9+6(m-1)=0
=>m^2+6m+3=0
=>\(m=-3\pm\sqrt{6}\)
Lời giải:
a) PT có nghiệm $x=2$
\(\Leftrightarrow 2^2-(m-5).2+m-7=0\)
\(\Leftrightarrow m-7=0\)
\(\Leftrightarrow m=7\)
Với $m=7$ ta viết lại PT thành: \(x^2-2x=0\)
\(\Leftrightarrow x(x-2)=0\Rightarrow x=0\) là nghiệm còn lại
b)
Ta thấy \(\Delta=(m-5)^2-4(m-7)=m^2-14m+53=(m-7)^2+4\geq 4>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có nghiệm (2 nghiệm pb) với mọi $m$ thực.
c)
Theo định lý Vi-et, với $x_1,x_2$ là nghiệm, để PT có 2 nghiệm dương thì \(\left\{\begin{matrix} x_1+x_2=m-5>0\\ x_1x_2=m-7>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>5\\ m>7\end{matrix}\right.\Leftrightarrow m> 7\)
a/ Thay \(x=2\) vào ta được:
\(4-2\left(m-4\right)+m-6=0\Rightarrow-m+6=0\Rightarrow m=6\)
\(\Rightarrow x_2=\frac{-b}{a}-x_1=m-4-2=0\)
b/ \(\Delta=\left(m-4\right)^2-4\left(m-6\right)=m^2-12m+40=\left(m-6\right)^2+4>0\) \(\forall m\)
\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt với mọi m
Bài 2:
a: \(x^2-4x+3=0\)
=>x=1 hoặc x=3
\(x_1^2+x_2^2=1^2+3^2=10\)
b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)
c: \(x_1^3+x_2^3=1^3+3^3=28\)
d: \(x_1-x_2=1-3=-2\)
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)
\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)
\(\Leftrightarrow4x^2-8x-17=0\)
\(\Leftrightarrow\left(2x-2\right)^2=21\)
hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)
b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)
\(=4+4m^2+16=4m^2+20>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
a) Thay m=2:
\(x^2-x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{13}}{2}\\x=\frac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
b) Thay x=2:
\(4-2\left(m-1\right)+m-5=0\)
\(\Leftrightarrow-m+1=0\)
\(\Leftrightarrow m=1\)
Thay m=1:
\(x^2-4=0\)
\(\Leftrightarrow x=\pm2\)
Vậy nghiệm còn lại là -2.
c) Có: \(\Delta=\left(m-1\right)^2-4\left(m-5\right)\)
\(\Delta=m^2-6m+21>0\forall m\)
Vậy pt luôn có nghiệm với mọi m.
Nguyễn Việt Lâm giúp mk nhá, thanks bn nhìu :>>>