Phân tích đa thức thành nhân tử
\(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=-y^3-xy^2+x^2y+x^3-z^3-yz^2+y^2z+y^3-x^3-zx^2+z^2x+z^3\)
\(=-xy^2+x^2y-yz^2+y^2z-zx^2+z^2x\)
\(=\left(x-y\right)\left(z-x\right)\left(z-y\right)\)
Cái này bn nên học chuyên đề tam giác pascal trước đi rùi hả làm
Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)
Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Hay \(A=3\cdot2x\cdot2y\cdot2z\)
\(A=24xyz\)
a/ Nó là cái gì mà không phải nhân tử b
b/ \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
c/ \(3\left(2x+y+z\right)\left(x+2y+z\right)\left(x+y+2z\right)\)
Đặt : \(x-y=a\)\(,y-z=b\)
\(\Rightarrow z-x=-\left(a+b\right)\)
\(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5=a^5+b^5\left[-\left(a+b\right)\right]^5=a^5+b^5-\left(a+b\right)^5\)
\(=a^5+b^5-\left(a^5+5a^4\times b+10a^3\times b^2+10a^2\times b^3+5a\times b^4+b^5\right)\)
\(=-\left(5a^4\times b+10a^3\times b^2+10a^2\times b^3+5a\times b^4\right)\)
\(=-5ab\left(a^3+2a^2\times b+2a\times b^2+b^3\right)\)
\(=-5ab\left[\left(a+b\right)\times\left(a^2+b^2-ab\right)+2ab\times\left(a+b\right)\right]\)
\(=-5ab\times\left(a+b\right)\times\left(a^2+ab+b^2\right)\)