cho x thuộc z tìm giá trị lớn nhất ,nhỏ nhất của A =5x-4/5x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ơi
bn nên đợi 1
năm nữa mình tra
lời cho còn
bây giờ mình mới học lớp 6
\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
\(a)\)
\(\text{Để A có giá trị nguyên: }\)
\(\frac{9}{x-4}\in Z\)
\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)
\(b)\)
\(\text{Để A có giá trị lớn nhất: }\)
\(\frac{9}{x-4}\)\(\text{lớn nhất}\)
\(x-4=1\)
\(x=5\)
\(c)\)
\(\text{Để A đạt giá trị nhỏ nhất:}\)
\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)
\(x-4=-1\)
\(x=3\)
Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)
Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)
Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)
b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)
Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4=1\)
\(\Rightarrow x=5\)
\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)
\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)
c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)
Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4\in Z\)
\(\Rightarrow x-4=-1\)
\(\Rightarrow x=3\)
\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)
\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)
\(A=\dfrac{-4x+7}{5x-10}=\dfrac{1}{5}\cdot\dfrac{-20x+35}{5x-10}\)
\(=\dfrac{1}{5}\cdot\dfrac{-20x+40-5}{5x-10}\)
\(=\dfrac{1}{5}\cdot\left(-4-\dfrac{5}{5x-10}\right)\)
\(=\dfrac{1}{5}\cdot\left(-4-\dfrac{1}{x-2}\right)\)
A min khi x-2=1
=>x=3
Nhác rồi :(
Dễ thấy GTTĐ ko âm nên:
5x ko âm => x ko âm
=> /x/+/x+1/+/x+2/+/x+3/=x+1+x+2+x+3+x=4x+6=5x=>x=6
Vậy: x=6
Ta có : A = \(\frac{5x-4}{5x+3}=\frac{5x+3-7}{5x+3}=1-\frac{7}{5x+3}\)( 1 )
+ Từ ( 1 ) thấy để A có giá trị lớn nhất thì \(\frac{7}{5x+3}\)có giá trị âm nhỏ nhất
=> 5x + 3 có giá trị âm lớn nhất mà x thuộc Z=> 5x + 3 thuộc Z
Do đó 5x + 3 = -1 => x = -4/5
Thay x = -4/5 vào A tính được A = 8
+ Từ ( 1 ) thấy để A có giá trị nhỏ nhất thì \(\frac{7}{5x+3}\)có giá trị dương lớn nhất
=> 5x + 3 có giá trị dương nhỏ nhất mà x thuộc Z => 5x + 3 thuộc Z
Do đó 5x + 3 = 1 => x = -2/5
Thay x = -2/5 vào A tính được A = -6
Vậy ...