tính
s= 2/3.5 +3/5.8+11/8.9 + 25/32.57 + 30/57.58
.=nhân nhé
giúp mik với ! mik đang cần
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{3.5}+\frac{3}{5.8}+\frac{11}{8.19}+\frac{13}{19.32}+\frac{25}{32.57}+\frac{30}{57.87}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{32}+\frac{1}{32}-\frac{1}{57}+\frac{1}{57}-\frac{1}{87}\)
\(=\frac{1}{3}-\frac{1}{87}=\frac{29}{87}-\frac{1}{87}=\frac{28}{87}\)
\(\frac{2}{3.5}+\frac{3}{5.8}+\frac{11}{8.19}+\frac{13}{19.32}+\frac{25}{32.57}+\frac{30}{57.87}\)
\(=\frac{5-3}{3.5}+\frac{8-5}{3}+\frac{19-8}{8.19}+\frac{32-29}{19.32}+\frac{57-32}{32.57}+\frac{87-57}{57.87}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{32}+\frac{1}{32}-\frac{1}{57}+\frac{1}{57}-\frac{1}{87}\)
\(=\frac{1}{3}-\frac{1}{87}=\frac{28}{87}\)
\(S=\frac{2}{3.5}+\frac{3}{5.8}+\frac{11}{8.19}+\frac{13}{19.32}+\frac{25}{32.57}+\frac{30}{57.85}\)
\(S=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{32}+\frac{1}{32}-\frac{1}{57}+\frac{1}{57}-\frac{1}{87}\)
\(S=\frac{1}{3}-\frac{1}{87}\)
\(S=\frac{28}{87}\)
\(C=\dfrac{2}{3\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{11}{8\cdot19}+\dfrac{13}{19\cdot32}+\dfrac{25}{32\cdot57}+\dfrac{30}{57\cdot87}\)\(C=\left(\dfrac{5-3}{3\cdot5}\right)+\left(\dfrac{8-5}{5\cdot8}\right)+\left(\dfrac{19-8}{8\cdot19}\right)+\left(\dfrac{32-19}{19\cdot32}\right)+\left(\dfrac{57-32}{32\cdot57}\right)+\left(\dfrac{87-57}{57\cdot87}\right)\)\(C=\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{8}\right)+\left(\dfrac{1}{8}-\dfrac{1}{19}\right)+\left(\dfrac{1}{19}-\dfrac{1}{32}\right)+\left(\dfrac{1}{32}-\dfrac{1}{57}\right)+\left(\dfrac{1}{57}+\dfrac{1}{87}\right)\)\(C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{57}+\dfrac{1}{57}-\dfrac{1}{87}\)\(C=\dfrac{1}{3}-\dfrac{1}{87}=\dfrac{28}{87}\)
\(A=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}\)
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(B=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+..+\dfrac{1}{195}\) ( là 195 ms đúng ! )
\(B=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{13\cdot15}\)
\(B=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(B=\dfrac{1}{2}\left(1-\dfrac{1}{15}\right)=\dfrac{1}{2}\cdot\dfrac{14}{15}=\dfrac{7}{15}\)
\(C=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{98\cdot100}\)
Rồi làm tương tự cân b nha!
\(D=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{57}\)
\(+\dfrac{1}{57}-\dfrac{1}{87}\)
\(D=\dfrac{1}{3}-\dfrac{1}{87}=\dfrac{28}{87}\)
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
Coi lại đề đi rồi mk làm cho
Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik