Cho hình bình hành ABCD, với AC > DB. Gọi E, F lần lượt là chân đường vuông góc kẻ từ C tới AB, AD. CMR: AB . AE + AD . AF = AC2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng định lý Pitago và các tính chất của hình bình hành như $AB=CD; AD=BC$ ta có:
\(AC^2=AF^2+FC^2=AF^2+DC^2-DF^2=(AF-DF)(AF+DF)+DC^2\)
\(=AD(AF+DF)+AB^2\)
\(=AD.AF+AD.DF+AB(AE-BE)\)
\(=(AD.AF+AB.AE)+(AD.DF-AB.BE)\)
\(=(AD.AF+AB.AE)+(BC.DF-CD.BE)(*)\)
Xét tam giác $CBE$ và $CDF$ có:
\(\widehat{CEB}=\widehat{CFD}=90^0\)
\(\widehat{CBE}=180^0-\widehat{ABC}=180^0-\widehat{ADC}=\widehat{CDF}\)
\(\Rightarrow \triangle CBE\sim \triangle CDF(g.g)\Rightarrow \frac{CB}{CD}=\frac{BE}{DF}\)
\(\Rightarrow BC.DF=BE.CD\Rightarrow BC.DF-CD.BE=0(**)\)
Từ \((*); (**)\Rightarrow AC^2=AD.AF+AB.AE\)
Ta có đpcm.
Qua B và D kẻ hai đường thẳng song song với đường thẳng D và cắt AC tại H và K.
Gọi giao điểm 2 đường chéo của hình bình hành ABCD.
Áp dụng định lí Ta-lét, ta có các tỉ số :
\(\frac{AB}{AE}=\frac{AH}{AM}\); \(\frac{AD}{AF}=\frac{AK}{AM}\)
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH}{AM}+\frac{AK}{AM}=\frac{AH+AK}{AM}=\frac{2AK+IH+IK}{AM}\)(1)
Ta có : \(\Delta BHI=\Delta DKI\left(gcg\right)\)
\(\Rightarrow IH=IK\)
Thay vào (1) ta được :
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AM}=\frac{2\left(AK+IK\right)}{AM}=\frac{2AI}{AM}\)
Mà \(AI=\frac{1}{2}AC\Rightarrow2AC=AI\)
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AM}\)(Đpcm)