K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 6 2018
Qua B và D kẻ 2 đường thẳng song song với d cắt đường chéo AC của hbh ABCD tại H và K.
Gọi I là tâm đối xứng của hbh ABCD.
Áp dụng ĐL Thales ta có các tỉ số: \(\frac{AB}{AE}=\frac{AH}{AO};\frac{AD}{AF}=\frac{AK}{AO}\)
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{AH+AK}{AO}=\frac{2AK+IH+IK}{AO}\)(*)
Dễ thấy \(\Delta\)BHI=\(\Delta\)DKI (g.c.g) => IH=IK, thay vào (*)
\(\Rightarrow\frac{AB}{AE}+\frac{AD}{AF}=\frac{2AK+2IK}{AO}=\frac{2\left(AK+IK\right)}{AO}=\frac{2AI}{AO}\)
Mà AI=1/2AC => \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)(đpcm).