K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

 Giả sử tam giác ABC có các đường cao AH, BK, CI. Ta cần c/m AH, BK, CI đồng quy. 
~~~~~~~ 
Qua 3 đỉnh A, B, C của tam giác, lần lượt kẻ các đường thẳng song song với các cạnh đối diện, chúng cắt nhau tại A'; B'; C'. (A' nằm khác phía với A qua BC, B' nằm khác phía với B qua AC, C' nằm khác phía với C qua AB). 
Xét tam giác ABC và tam giác BAC' có: 
góc BAC = góc ABC' (so le trong) 
AB chung 
góc ABC = góc BAC' (so le trong) 
=> tam giác ABC = tam giác BAC' (gcg) 
=> AC = BC'. 
Chứng minh tương tự ta có AC = BA'. 
=> BC' = BA' => B là trung điểm của A'C'. 
Do BK _|_ AC, A'C' // AC => BK _|_ A'C'. 
=> BK là đường trung trực của A'C'. 
Cmtt => AH và CI là trung trực của B'C' và A'B'. 
=> AH, BK, CI là 3 đường trung trực của tam giác A'B'C'. Ta dễ dàng c/m được 3 đường trung trực của tam giác đồng quy dựa vào tính chất điểm nằm trên đường trung trực của một đoạn thằng thì cách đều hai mút của đoạn thẳng đó. Vậy AH, BK, CI đồng quy tại 1 điểm, điểm đó gọi là trực tâm của tam giác ABC.

a: Xét ΔABD vuông tại D vàΔACE vuông tại E có

góc A chung

Do đó: ΔABD đồng dạng với ΔACE

b: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ

nên BEDC là tứ giác nội tiếp

=>góc BED+góc BCD=180 độ

6 tháng 9 2019

Loa loa, tin nóng hổi. CẶP VỢ CHỒNG SON TRẺ NHẤT VIỆT NAM ĐÂY

https://olm.vn/thanhvien/nhu140826

https://olm.vn/thanhvien/trungkienhy79

Tình yêu đã giúp cho hai anh chị 2k6 này bất chấp tất cả (học tập, vui chơi),nể thật.

6 tháng 9 2019

A B C D E H

Đề này thiếu quá nhiếu! Thứ nhất câu a đề sai hay sao ấy, thứ 2, ở câu b, điểm N và O ở đâu ra? Câu c thì chưa nghĩ ra:v

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao