giai bpt
\(x+\frac{x}{\sqrt{x^2+1}}>\frac{35}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{1}{x^2+2x-3}=1.\)
\(ĐK:\hept{\begin{cases}x-1\ne0\\x+3\ne\\x^2+2x-3\ne0\end{cases}0}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\Leftrightarrow-3\end{cases}}\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)+4-x^2-2x+3=0\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5+4-x^2-2x+3=0\)
\(\Leftrightarrow3x+9=0\)
\(\Leftrightarrow3x=-9\Leftrightarrow x=-3\) (loại)
Vậy pt vô No
a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\x\ne\left\{3;11\right\}\end{matrix}\right.\)
Đặt \(\sqrt{x-2}=t\ge0\)
\(\Rightarrow\frac{3}{t-1}\ge\frac{5}{t-3}\)
\(\Leftrightarrow\frac{3}{t-1}-\frac{5}{t-3}\ge0\)
\(\Leftrightarrow\frac{3t-9-5t+5}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{-2t-4}{\left(t-1\right)\left(t-3\right)}\ge0\)
\(\Leftrightarrow\frac{t+2}{\left(t-1\right)\left(t-3\right)}\le0\)
\(\Leftrightarrow1< t< 3\)
\(\Rightarrow1< \sqrt{x-2}< 3\)
\(\Leftrightarrow1< x-2< 9\Rightarrow3< x< 11\)
b/
ĐKXĐ: \(x\ge3\)
- Với \(x=3\) BPT thỏa mãn
- Với \(x>3\Rightarrow\sqrt{x-3}>0\) BPT tương đương
\(x-\frac{1}{2-x}\le0\Leftrightarrow x+\frac{1}{x-2}\le0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x-2}\le0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}\le0\Rightarrow\) không tồn tại x thỏa mãn
Vậy BPT có nghiệm duy nhất \(x=3\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\-\frac{4}{\sqrt{3}}\le x\le\frac{4}{\sqrt{3}}\end{matrix}\right.\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT vô nghiệm
- Với \(0< x\le\frac{4}{\sqrt{3}}\) hai vế đều dương, bình phương:
\(\frac{4}{x^2}+\frac{1}{4}-\frac{2}{x}>\frac{4}{x^2}-\frac{3}{4}\)
\(\Leftrightarrow\frac{2}{x}< 1\Rightarrow x>2\)
Vậy nghiệm của BPT là \(2< x\le\frac{4}{\sqrt{3}}\)