\(\frac{x^2}{\left(1+\sqrt{1+x}\right)^2}>x-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020
https://i.imgur.com/q2TMREU.jpg
13 tháng 1 2020

bạn lập bảng xét dấu nhé

NV
5 tháng 5 2020

ĐKXĐ: \(x\ge\frac{1}{4}\)

\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)

\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)

\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)

Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng

Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)

b/ ĐKXĐ: \(x\ge4\)

\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)

\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)

- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\le5\) bình phương 2 vế:

\(2\left(x^2-16\right)>4\left(x-5\right)^2\)

\(\Leftrightarrow x^2-20x+66< 0\)

\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)

Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)

4 tháng 5 2020

x-3 ; mình đánh thiếu

NV
5 tháng 3 2020

ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x\le-1\end{matrix}\right.\)

- Với \(x>3\) BPT tương đương:

\(\left(x-3\right)\left(x+1\right)+2\sqrt{\left(x-3\right)\left(x+1\right)}-3< 0\)

\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}-1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}+3\right)< 0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 1\)

\(\Leftrightarrow x^2-2x-4< 0\Rightarrow3< x< 1+\sqrt{5}\)

- Với \(x\le-1\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-2\sqrt{\left(x-3\right)\left(x+1\right)}< 3\)

\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}+1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}-3\right)< 0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 9\Leftrightarrow x^2-2x-12< 0\)

\(\Rightarrow1-\sqrt{13}< x\le-1\)

Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}3< x< 1+\sqrt{5}\\1-\sqrt{13}< x\le-1\end{matrix}\right.\)

1 tháng 10 2019

Đệ biết là có người làm câu c,d nên xin xí câu e :3

ĐK: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)

\(PT\Leftrightarrow5+\sqrt{x+1}=7\left(x-2\right)\)

\(\Leftrightarrow\sqrt{x+1}=7x-19\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=49x^2-266x+361\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\)

\(\Rightarrow x=3\left(tm\right)\)

NV
1 tháng 10 2019

a/ \(\Leftrightarrow\left\{{}\begin{matrix}9-2x\ge0\\x^2-4x-12=\left(9-2x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{9}{2}\\3x^2-32x+93=0\end{matrix}\right.\)

Phương trình vô nghiệm

b/ \(\Leftrightarrow\left(x+1\right)\sqrt[3]{15x^2-x-1}-\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\sqrt[3]{15x^2-x-1}-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt[3]{15x^2-x-1}-x+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{15x^2-x-1}=x-1\)

\(\Leftrightarrow15x^2-x-1=x^3-3x^2+3x-1\)

\(\Leftrightarrow x^3-18x^2+4x=0\)

\(\Leftrightarrow x\left(x^2-18x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\pm\sqrt{77}\\\end{matrix}\right.\)

NV
13 tháng 3 2020

- Với \(x< 4\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge4\) BPT tương đương:

\(\frac{x^2\left(\sqrt{x+1}-1\right)^2}{\left(\sqrt{x+1}+1\right)^2\left(\sqrt{x+1}-1\right)^2}>x-4\)

\(\Leftrightarrow\frac{x^2\left(x+2-2\sqrt{x+1}\right)}{x^2}>x-4\)

\(\Leftrightarrow x+2-2\sqrt{x+1}>x-4\)

\(\Leftrightarrow\sqrt{x+1}< 3\Leftrightarrow x+1< 9\)

\(\Rightarrow x< 8\)

Vậy nghiệm của BPT là \(-1\le x< 8\)