TÌM X,Y BIẾT :\(\sqrt{x^2+4}+\sqrt{4y^2+9}=5\)\(5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ĐKXĐ: \(x\ge0\)
\(pt\Leftrightarrow2x=25\Leftrightarrow x=\dfrac{25}{2}\left(tm\right)\)
2) \(=\sqrt{\dfrac{\dfrac{1}{4}}{9}}=\dfrac{\dfrac{1}{2}}{3}=\dfrac{1}{6}\)
3) \(=\sqrt{225a^2}=15a\left(do.a\ge0\right)\)
4) \(=2y^2.\dfrac{x^2}{2\left|y\right|}=\left[{}\begin{matrix}x^2y\left(y>0\right)\\-x^2y\left(y< 0\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{2018x^2+9}\ge\sqrt{9}=3\\\sqrt{4y^2+4y+5}=\sqrt{\left(2y+1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\)
\(\Rightarrow VT\ge2+3=5\) (1)
\(4x^2\ge0\Rightarrow5-4x^2\le5\Rightarrow VP\le5\) (2)
Từ (1),(2) \(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra khi và chỉ khi \(VT=VP=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}2018x^2=0\\\left(2y+1\right)^2=0\\4x^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-\frac{1}{2}\end{matrix}\right.\)
Bài 1:
b: \(\Leftrightarrow2+\sqrt{3x-5}=x+1\)
\(\Leftrightarrow\sqrt{3x-5}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=3x-5\\x>=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+6=0\\x>=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;3\right\}\)
c: \(\Leftrightarrow5x+7=16\left(x+3\right)\)
=>16x+48=5x+7
=>11x=-41
hay x=-41/11