Trục căn thức ở mẫu: \(\dfrac{1+\sqrt{5}}{\sqrt{15}-\sqrt{5}+\sqrt{3}-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a.
\(\frac{1}{2\sqrt{2}-3\sqrt{3}}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2}-3\sqrt{3})(2\sqrt{2}+3\sqrt{3})}=\frac{2\sqrt{2}+3\sqrt{3}}{(2\sqrt{2})^2-(3\sqrt{3})^2}=\frac{2\sqrt{2}+3\sqrt{3}}{-19}\)
b.
\(=\sqrt{\frac{(3-\sqrt{5})^2}{(3-\sqrt{5})(3+\sqrt{5})}}=\sqrt{\frac{(3-\sqrt{5})^2}{3^2-5}}=\sqrt{\frac{(3-\sqrt{5})^2}{4}}=\sqrt{(\frac{3-\sqrt{5}}{2})^2}=|\frac{3-\sqrt{5}}{2}|=\frac{3-\sqrt{5}}{2}\)
Bài 2.
a.
\(=\frac{\sqrt{8}(\sqrt{5}+\sqrt{3})}{(\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3})}=\frac{2\sqrt{2}(\sqrt{5}+\sqrt{3})}{5-3}=\sqrt{2}(\sqrt{5}+\sqrt{3})=\sqrt{10}+\sqrt{6}\)
b.
\(=\sqrt{\frac{(2-\sqrt{3})^2}{(2-\sqrt{3})(2+\sqrt{3})}}=\sqrt{\frac{(2-\sqrt{3})^2}{2^2-3}}=\sqrt{(2-\sqrt{3})^2}=|2-\sqrt{3}|=2-\sqrt{3}\)
1) Ta có: \(3\sqrt{12}+\dfrac{1}{2}\sqrt{48}-\sqrt{27}\)
\(=3\cdot2\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-3\sqrt{3}\)
\(=6\sqrt{3}+2\sqrt{3}-3\sqrt{3}\)
\(=5\sqrt{3}\)
2) Ta có: \(\dfrac{2}{\sqrt{3}-5}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}\)
\(=\dfrac{2\left(\sqrt{3}+5\right)}{3-25}\)
\(=\dfrac{-2\left(\sqrt{3}+5\right)}{22}\)
\(=\dfrac{-\sqrt{3}-5}{11}\)
3) Ta có: \(\sqrt{\dfrac{2}{5}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{5}}\)
\(=\dfrac{\sqrt{2}\cdot\sqrt{5}}{5}\)
\(=\dfrac{\sqrt{10}}{5}\)
Nếu em thấy các câu hỏi do lag mà bị gửi đúp (tức là rất nhiều câu hỏi giống nhau xuất hiện cùng 1 chỗ) thì xóa giúp mình nhé cho đỡ vướng. Nhưng nhớ để lại 1 câu. Cảm ơn em.
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}=\dfrac{\sqrt{3}-\sqrt{2}-1}{\left(\sqrt{3}+\sqrt{2}+1\right)\left(\sqrt{3}-\sqrt{2}-1\right)}\)
\(=\dfrac{\sqrt{3}-\sqrt{2}-1}{3-\left(\sqrt{2}+1\right)^2}=\dfrac{\sqrt{3}-\sqrt{2}-1}{-2\sqrt{2}}=\dfrac{\left(\sqrt{3}-\sqrt{2}-1\right)\sqrt{2}}{-2\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}-2-\sqrt{2}}{-4}\)
\(=\dfrac{2+\sqrt{2}-\sqrt{6}}{4}\)
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
\(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}=\dfrac{2+\sqrt{2}-\sqrt{6}}{4}\)
a) \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
\(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}\)
\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{3^2-\left(\sqrt{5}\right)^2}}\)
\(=\dfrac{\left|3-\sqrt{5}\right|}{\sqrt{9-5}}\)
\(=\dfrac{3-\sqrt{5}}{2}\)
b) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)
\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)
\(=\dfrac{\left|2-\sqrt{3}\right|}{\sqrt{4-3}}\)
\(=\dfrac{2-\sqrt{3}}{1}\)
\(=2-\sqrt{3}\)
a: \(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}}=\dfrac{3-\sqrt{5}}{2}\)
b: \(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{1}}=2-\sqrt{3}\)
d: \(=\left(-3+3\sqrt{6}+4+2\sqrt{6}-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)
=(căn 6-11)(căn 6+11)
=6-121=-115
\(\dfrac{3\sqrt{5}}{2\sqrt{5}-1}\)
\(=\dfrac{3\sqrt{5}\left(2\sqrt{5}+1\right)}{\left(2\sqrt{5}-1\right)\left(2\sqrt{5}+1\right)}\)
\(=\dfrac{30-3\sqrt{5}}{\left(2\sqrt{5}\right)^2-1}\)
\(=\dfrac{30-\sqrt{5}}{20-1}\)
\(=\dfrac{30-\sqrt{5}}{19}\)
\(B=\dfrac{\left(1+\sqrt{5}\right)\left(2+\sqrt{5}\right)}{-1}=-2-3\sqrt{5}-5=-7-3\sqrt{5}\)
\(C=\dfrac{5\sqrt{x}-x}{2x}\)
\(D=\dfrac{\left(\sqrt{a}+1\right)\left(2\sqrt{a}+1\right)}{4a-1}\)
\(E=\dfrac{15}{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{\sqrt{15}}{\sqrt{5}-\sqrt{3}}=\dfrac{\sqrt{75}+\sqrt{45}}{2}\)
1) \(5\sqrt{8}-\dfrac{7}{2}\sqrt{72}+6\sqrt{\dfrac{1}{2}}\\ =5.\sqrt{4^2.\dfrac{1}{2}}-\dfrac{7}{2}.\sqrt{12^2.\dfrac{1}{2}}+6.\sqrt{\dfrac{1}{2}}=\left(5.4+\dfrac{7}{2}.12+6\right)\sqrt{\dfrac{1}{2}}\\ =68\sqrt{\dfrac{1}{2}}\)
2) \(\dfrac{6}{\sqrt{5}-1}=\dfrac{6.\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\dfrac{6\left(\sqrt{5}+1\right)}{5-1}\\ =\dfrac{6\left(\sqrt{5}+1\right)}{4}=\dfrac{3.\left(\sqrt{5+1}\right)}{2}\)
\(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}=\dfrac{3-\sqrt{5}}{2}\)
a: \(=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{3}}{7+2\sqrt{10}-3}=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{3}}{4+2\sqrt{10}}\)
\(=\dfrac{-\left(\sqrt{3}+\sqrt{2}+\sqrt{5}\right)\left(4-2\sqrt{10}\right)}{24}\)
b: \(=\dfrac{2+\sqrt{3}+\sqrt{5}}{4-8+2\sqrt{15}}=\dfrac{2+\sqrt{3}+\sqrt{5}}{2\sqrt{15}-4}\)
\(=\dfrac{\left(2+\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{15}+4\right)}{44}\)
Theo mình thì làm như vầy nha:
\(\dfrac{1+\sqrt{5}}{\sqrt{15}-\sqrt{5}+\sqrt{3}-1}\)
=\(\dfrac{1+\sqrt{5}}{\left(\sqrt{15}-\sqrt{5}\right)+\left(\sqrt{3}-1\right)}\)
=\(\dfrac{1+\sqrt{5}}{\sqrt{5}\left(\sqrt{3}-1\right)+\left(\sqrt{3}-1\right)}\)
=\(\dfrac{1+\sqrt{5}}{\left(1+\sqrt{5}\right)\left(\sqrt{3}-1\right)}\)
=\(\dfrac{1}{\sqrt{3}-1}\)
=\(\dfrac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
=\(\dfrac{\sqrt{3}+1}{3-1}\)
=\(\dfrac{\sqrt{3}+1}{2}\)