K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2019

\(C=4+2^2+2^3+...+2^{20}\)

\(\Rightarrow C=2^2+2^2+2^3+...+2^{20}\)

\(\Rightarrow2C=2\left(2^2+2^2+2^3+...+2^{20}\right)\)

\(\Rightarrow2C=2^3+2^3+2^4+...+2^{21}\)

\(\Rightarrow2C-C=2^{21}+2^3-2^2-2^2\)

\(\Rightarrow C=2^{21}+8-4-4\)

\(\Rightarrow C=2^{21}-0\)

\(\Rightarrow C=2^{21}\)

10 tháng 11 2021

Đổi 4 thành 2 mũ 2

 

Thử xem cs đúng ko . Vì mik chữ thầy toán giả thầy toán hết r

10 tháng 11 2021

Dễ:đổi 4=22

B=22+23+24+...+220

ta có:B=2B-B=(23+24+25+...+221)-(22+23+24+...+220)

                    = 221-22

Nói trước: đây là mình rút gọn chứ viết mà theo cơ số 2 thì khó quá

 

 

16 tháng 10 2021

\(A=2+2^2+...+2^{20}\\ 2A=2^2+2^3+...+2^{21}\\ A=2^{21}-2\)

16 tháng 10 2021

Đặt \(A=2+2^2+2^3+...+2^{20}\)

\(2A=2^2+2^3+2^4+...+2^{21}\)

\(2A-A=2^2+2^3+2^4+...+2^{21}-2+2^2+2^3+...+2^{20}\)

\(A=2^{21}-2\)

14 tháng 10 2023

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

14 tháng 10 2023

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee

19 tháng 2 2021

chữ số tận cùng là số 0

19 tháng 2 2021

Ta có: 2 + 22 + 23 + ... + 220

= (2 + 22 + 23 + 24) + (25 + 2+ 27 + 28) + ... + (217 + 218 + 219 + 220)

= (2 + 22 + 23 + 24) + 24(2 + 22 + 23 + 24) + 28(2 + 22 + 23 + 24) + 216(2 + 22 + 23 + 24)

= (1 + 24 + 28 + 216)(2 + 22 + 23 + 24)

= 30(2 + 22 + 23 + 24)

Vì 30 có tận cùng là 0 nên 30(2 + 22 + 23 + 24) có tận cùng là 0

hay 2 + 22 + 23 + ... + 220 có tận cùng là 0

Chúc bn học tốt!

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

AH
Akai Haruma
Giáo viên
23 tháng 10 2023

Lời giải:

$A=(2+2^2)+(2^3+2^4)+....+(2^{19}+2^{20})$

$=2(1+2)+2^3(1+2)+....+2^{19}(1+2)$

$=(2+2^3+...+2^{19})(1+2)=(2+2^3+...+2^{19}).3\vdots 3(1)$
---------------------

Lại có:

$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{17}+2^{18}+2^{19}+2^{20})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{17})$

$=15(2+2^5+...+2^{17})\vdots 15(2)$

Từ $(1); (2)$ ta có đpcm.

23 tháng 10 2023

 

Ta có:

A=2+22+23+...+220

A=(2+22)+(23+24)...+(219+220)

A=2.(1+2)+23.(1+2)...+219.(1+2)

A=2.3+23.3...+219.3

A=3.(2+23+...+219)

vậy a chia hết cho 3 vì a=3k với k là số tự nhiên

Ta có:

A=2+22+23+...+220

A=(2+22+23+24)+(25+26+27+28)+...+(217+218+219+220)

A=2.(1+2+22+23)+25.(1+2+22+23)+...+217.(1+2+22+23)

A=2.(1+2+4+8)+25.(1+2+4+8)+...+217.(1+2+4+8)

A=2.15+25.15+...+217.15

A=(15.2.+25.+...+217)

vậy a chia hết cho 15 vì a=15k với k là số tự nhiên

 

 

 

7 tháng 7 2019

a) A chia hết cho 2 vì tất cả các số hạng của tổng đều chia hết cho 2.

b) Ta tách ghép các số hạng của A thành các nhóm sao cho mỗi nhóm xuất hiện thừa số chia hết cho 3. Khi đó:

10 tháng 10 2021
4₁ A= 2 +2²³ +2 ² + + 220 a₁ A = 2₁ [1 + 2 +2²¹ +. +2¹2):2 Vay A chia hết choi b₁ A = 2 + 2² +2²+ + 220 (2 +2²) + (2 ² + 2 9) + . + (219+220) = 2₁ (1 + 2) + 2² (2+1). .. +2 19 (2+1) + = 2₁3 + 2³.3 + ..+ 219.3. = (2+2 ³+ + 219) 3:3 Vậy A chia hết cho 3 A = 2 + 2 ² + 2³ + 2ª +. 20 + 2.9+ +2 2+2 ³ + 2² +2²4 + + 218 + 720 +2²³ +2²+ +218 +220 2. (2 +2²) + 2² (1+2²) +.. + 218 ( 1 +2²) = 2 5 +2²5 + + 218 5. 12 +2° + 2 ... +218 ) 5 : 5. vậy A chia hết cho 5
13 tháng 11 2023

Sửa đề: \(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)

=>\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{19}\right)⋮3\)