Cho a,b,c là ba cạnh của một tam giác có chu vi bằng 4
chứng minh rằng :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+8>9\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng chứng minh bất đẳng thức phụ :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a;b>0\)và p - a; p - b; p - c > 0 theo bất đẳng thức trong tam giác.
Áp dụng bất đẳng thức phụ vừa chứng minh, ta có:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{2p-a-b}=\dfrac{4}{c}\left(1\right)\)
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{2p-b-c}=\dfrac{4}{a}\left(2\right)\)
\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{2p-c-a}=\dfrac{4}{a}\left(3\right)\)
Cộng (1); (2); (3) theo vế, ta có:
\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\RightarrowĐPCM\)
Ta CM BĐT sau :
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy ; ta có :
\(\left(x-y\right)^2\ge0\\ \Rightarrow x^2-2xy+y^2\ge0\\ \Rightarrow x^2+y^2\ge2xy\\ \Rightarrow\left(x+y\right)^2\ge4xy\\ \Rightarrow\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\\ \Rightarrow\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\left(đpcm\right)\)
\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{c}\\ \dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\\ \dfrac{1}{p-a}+\dfrac{1}{p-c}\ge\dfrac{4}{b}\\ \Rightarrow2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\\ \Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(đpcm\right)\)
bạn trình bày rõ bđt 1/x + 1/y >_ 4/x+y dc ko vì mình ko hiểu lắm
Vì vai trò của a,b,c là như nhau, giả sử
\(a\ge c\ge b>0\)
Ta có
\(a+b-c< a\)
\(\Leftrightarrow b-c\le0\) ( đúng với gt )
\(\Rightarrow a+b-c< a\)
\(\Leftrightarrow\left(a+b-c\right)^2< a^2\)
\(\Leftrightarrow\dfrac{1}{\left(a+b-c\right)^2}\ge\dfrac{1}{a^2}\)
CMTT :
\(\dfrac{1}{\left(b+c-a\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{c^2}\)
Cộng vế với vế 3 BĐT trên , được
\(\dfrac{1}{\left(a+b-c\right)^2}+\dfrac{1}{\left(b+c-a\right)^2}+\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
Áp dụng bđt Cauchy-Schwarz:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{\left(1+1\right)^2}{2p-a-b}=\dfrac{4}{c}\)
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{\left(1+1\right)^2}{2p-b-c}=\dfrac{4}{a}\)
\(\dfrac{1}{p-a}+\dfrac{1}{p-c}\ge\dfrac{\left(1+1\right)^2}{2p-a-c}=\dfrac{4}{b}\)
Cộng theo vế:
\(2VT\ge4VP\Leftrightarrow VT\ge2VP\Leftrightarrowđpcm\)
\("="\Leftrightarrow a=b=c\)
Ta có :
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{2}{c}\)
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{p-a+p-c}=\dfrac{2}{a}\)
\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{p-c+p-a}=\dfrac{2}{b}\)
Cộng từng về ta có đpcm
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)
Áp dụng:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{4}{2p-a-b}\)
Mà \(2p=a+b+c\)
\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{a+b+c-a-b}=\dfrac{4}{c}\)
Tương tự \(\Rightarrow2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\)
\(\Rightarrowđpcm\)
Thôi câu đó mình làm được rồi, các bạn giúp mình câu này nha
Cho \(a>b\ge0\). CMR: \(\dfrac{a^4+b^4}{a^4-b^4}-\dfrac{ab}{a^2-b^2}+\dfrac{a+b}{2\left(a-b\right)}\ge\dfrac{3}{2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\\ \to ab+bc+ca=abc=1\)
Ta có \(A=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)\)
\(\to A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)
\(\to A=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Vì $a,b,c\in \mathbb{Q}\to A\in \mathbb{Q}$
Đặt \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(abc\right)^2}{a^3\left(b+c\right)}+\dfrac{\left(abc\right)^2}{b^3\left(c+a\right)}+\dfrac{\left(abc\right)^2}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ca\right)^2}{b\left(c+a\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)
\(P\ge\dfrac{\left(bc+ca+ab\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\) (BĐT B.C.S)
\(=\dfrac{ab+bc+ca}{2}\) \(\ge\dfrac{3\sqrt[3]{abbcca}}{2}=\dfrac{3}{2}\) (do \(abc=1\)).
ĐTXR \(\Leftrightarrow a=b=c=1\)