Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét hiệu: \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{4}{a+b}\)
=\(\dfrac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\)
\(=\dfrac{a^2-2ab+b^2}{ab\left(a+b\right)}=\dfrac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)
Vì a,b>0
Xảy ra đẳng thức khi và chỉ khi a=b
a) Ta có: \(\left(a-b\right)^2\ge0\left(1\right)\forall a,b\)
( Dấu = xày ra khi và chỉ khi a=b)
Cộng 4ab vào 2 vế, ta có:
\(\left(a-b\right)^2+4ab\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)
Chia 2 vế cho ab(a+b)>0, ta có:
\(\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\Leftrightarrow\)\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
b) Ta có:
\(2p=a+b+c\)
\(p-a=\dfrac{a+b+c}{2}-a=\dfrac{b+c-a}{2}>0\) vì b+c>a
Tương tự: \(p-b>0,p-c>0\)
Áp dụng BĐT: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)cho từng cặp số p-a, p-b; p-b,p-c;p-c,p-a
Ta có:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{\left(p-a\right)+\left(p-b\right)}=\dfrac{4}{2p-\left(a+b\right)}=\dfrac{4}{c}\left(1\right)\)
Tương tự:
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{a}\left(2\right)\)
\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{b}\left(3\right)\)
Cộng các BĐT cùng chiều (1), (2), (3) vế theo vế, ta có:
\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Do đó: \(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
BĐT cô si: \(\dfrac{x+y}{2}>\left(hoặc=\right)\sqrt{xy}\)
=>x+y >(hoặc =) \(2\sqrt{xy}\)
=>\(\left(x+y\right)^2>\left(hoặc=\right)4xy\)
=>\(\dfrac{1}{x}+\dfrac{1}{y}>\left(hoặc=\right)\dfrac{4}{x+y}\)
vì P=\(\dfrac{a+b+c}{2}=>a+b+c=2p\)
=>c=2p-a-b
b=2p-a-c
a=2p-b-c
ta có:\(\dfrac{1}{p-a}+\dfrac{1}{p-b}>hoặc=\dfrac{4}{p-a+p-b}=\dfrac{4}{c}\)
\(\dfrac{1}{p-a}+\dfrac{1}{p-c}>\left(hoặc=\right)\dfrac{4}{p-a+p-c}=\dfrac{4}{b}\)
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}>\left(hoặc=\right)\dfrac{4}{p-b+p-c}=\dfrac{4}{a}\)
cộng vế với vế ta đc
\(2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)>\left(hoặc=\right)4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
<=>\(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}>\left(hoặc=\right)2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Câu hỏi của Phạm Thị Hường - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài làm ở link này nhé!
\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{2}{b}\)
Tương tự:
\(\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{2}{a}\) ; \(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c}\)
Cộng vế:
\(2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)
\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
cho em hỏi tại sao 1/a+b-c +1/b+c-a>=4/a+b-c+b+c-a vậy ạ
\(\dfrac{a}{bc}+\dfrac{b}{ac}>=2\cdot\sqrt{\dfrac{a}{bc}\cdot\dfrac{b}{ac}}=\dfrac{2}{cc}\)
\(\dfrac{b}{ca}+\dfrac{c}{ab}>=2\cdot\sqrt{\dfrac{bc}{ca\cdot ab}}=\dfrac{2}{a}\)
\(\dfrac{c}{ab}+\dfrac{a}{bc}>=2\cdot\sqrt{\dfrac{a\cdot c}{a\cdot b\cdot c\cdot b}}=\dfrac{2}{b}\)
=>a/bc+b/ac+c/ab>=2(1/a+1/b+1/c)
Giả sử đpcm là đúng , khi đó , ta có :
\(\left|\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-\left(\frac{a}{c}+\frac{c}{b}+\frac{b}{a}\right)< 1\right|\)
\(\Leftrightarrow\left|\frac{a-c}{b}+\frac{b-a}{c}+\frac{c-b}{a}\right|< 1\)
\(\Leftrightarrow\left|\frac{\left(a-c\right)ac+\left(b-a\right)ab+\left(c-b\right)bc}{abc}\right|< 1\)
Lại có : \(\left(a-c\right)ac+\left(b-a\right)ab+\left(c-b\right)bc\)
\(=\left(a-c\right)ac-\left(a-c+c-b\right)ab+\left(c-b\right)bc\)
\(=\left(a-c\right)\left(ac-ab\right)-\left(c-b\right)\left(ab-bc\right)\)
\(=a\left(a-c\right)\left(c-b\right)-b\left(c-b\right)\left(a-c\right)\)
\(=\left(a-c\right)\left(c-b\right)\left(a-b\right)\)
\(\Rightarrow\left|\frac{\left(a-c\right)\left(c-b\right)\left(a-b\right)}{abc}\right|< 1\) ( 1 )
Mặt khác : a ; b ; c là 3 cạnh tam giác
=> \(\frac{\left|a-c\right|}{b}< 1;\frac{\left|b-a\right|}{c}< 1;\frac{\left|c-b\right|}{a}< 1\)
\(\Rightarrow\frac{\left|\left(a-c\right)\left(b-a\right)\left(c-b\right)\right|}{abc}< 1\) ( 2 )
Biểu thức trong giá trị tuyệt đối của ( 1 ) ; ( 2 ) đối nhau
=> từ ( 2 ) => (1)
=> Điều giả sử là đúng
=> ĐPCM
Ta có :
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{2}{c}\)
\(\dfrac{1}{p-b}+\dfrac{1}{p-c}\ge\dfrac{4}{p-a+p-c}=\dfrac{2}{a}\)
\(\dfrac{1}{p-c}+\dfrac{1}{p-a}\ge\dfrac{4}{p-c+p-a}=\dfrac{2}{b}\)
Cộng từng về ta có đpcm
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)
Áp dụng:
\(\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{p-a+p-b}=\dfrac{4}{2p-a-b}\)
Mà \(2p=a+b+c\)
\(\Rightarrow\dfrac{1}{p-a}+\dfrac{1}{p-b}\ge\dfrac{4}{a+b+c-a-b}=\dfrac{4}{c}\)
Tương tự \(\Rightarrow2\left(\dfrac{1}{p-a}+\dfrac{1}{p-b}+\dfrac{1}{p-c}\right)\ge\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\)
\(\Rightarrowđpcm\)