K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi H là trung điểm của BC

Xét ΔBDC có BM/BD=BH/BC

nên MH//DC và MH=1/2DC

=>MH//AB

Xét ΔCAB có CN/CA=CH/CB

nên HN//AB và HN=AB/2

mà MH//AB

nên M,N,H thẳng hàng

=>MN//AB

b: MN=MH-NH

=1/2(CD-AB)

29 tháng 8 2020

A B C D E F

Bài làm:

Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)

Xét trong Δ vuông ADE tại D có góc A bằng 60 độ

=> \(\widehat{ADE}=30^0\)

Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)

Tương tự tính được: \(BF=1\left(cm\right)\)

=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)

Vì DC // FE và DE // FC nên theo t/c đoạn chắn

=> DC = FE = 2,5 (cm)

Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)

=> \(DE=\sqrt{3}\left(cm\right)\)

Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)

29 tháng 8 2020

         Giải

Kẻ DH vuông góc với AB

\(\sin\widehat{A}=\frac{DH}{AD}\)

\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)

\(\cos A=\frac{AH}{AD}\)

\(AH=\cos60^o.2\)

\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)

\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)

\(=\frac{7\sqrt{3}}{2}\)

28 tháng 8 2021

từ A kẻ đường thẳng song song với BC cắt CD tại E

tứ giác ABCE là hình bình hành AB=CE=4cm;AE=BC=5cmDE=CD-EC=4cm

xét Δ ADE có:AD2+DE2=32+42=25

AE2=52=25AD2+DE2=AE2

⇒Δ⇒ΔADE vuông tại D ⇒AD⊥DE hay AD⊥DC

tứ giác ABCD là hình thang vuông 

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:
Kẻ đường cao $AM$ và $BN$ của hình thang

Dễ cm $ABNM$ là hình chữ nhật nên $MN=AB=4$ (cm)

$DM+CN=DC-MN=8-4=4$ (cm)

Áp dụng định lý Pitago:

$DM^2=DA^2-AM^2=9-h^2$
$CN^2=BC^2-BN^2=25-h^2$

$\Rightarrow CN^2-DM^2=25-9=16$

$\Leftrightarrow (CN-DM)(CN+DM)=16$

$\Leftrightarrow 4(CN-DM)=16$

$\Leftrightarrow CN-DM=4$

Vậy $CN-DM=CN+DM\Rightarrow DM=0$ hay $D\equiv M$

$\Rightarrow AD\perp CD$ nên $ABCD$ là hình thang vuông tại $D$ và $A$

 

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Hình vẽ:

16 tháng 8 2018

Giups minh vs minh can gap

27 tháng 11 2014

Xét AED và BFC có :

AD = BC ( gt )

Góc A = góc C 

Góc DAE = góc CFB ( vì góc A = góc B mà AE và BF là hai đường cao của hình thang cân ABCD)

Do đó tam giác AED = tam giác BFC suy ra DE = CF ( hai cạnh tương ứng )

28 tháng 8 2019

Cho hinh thang can ABCD (AB//CD), E la giao diem cua 2 duong cheo. Chung minh rang EA=EB, EC=ED

a: Sửa đề: O là giao của AC và BD

Xét ΔADC và ΔBCD có

AD=BC

DC chung

AC=BD

=>ΔADC=ΔBCD

=>góc ODC=góc OCD=45 độ

=>ΔDOC vuông cân tại O

b: góc OAB=góc ODC=45 độ

=>ΔOAB vuông cân tại O

=>2*OB^2=AB^2

=>AB=OB*căn 2
ΔODC vuông cân tại O

=>DC=OD*căn 2

=>AB+DC=6*căn 2(cm)

Kẻ BH vuông góc DC

Xét ΔBHD vuông tại H có góc BDH=45 độ

nên BH=BD*sin45=3*căn 2(cm)

=>S ABCD=1/2*3*căn 2*6căn 2=18cm2