K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2020

A B C D E F

Bài làm:

Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)

Xét trong Δ vuông ADE tại D có góc A bằng 60 độ

=> \(\widehat{ADE}=30^0\)

Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)

Tương tự tính được: \(BF=1\left(cm\right)\)

=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)

Vì DC // FE và DE // FC nên theo t/c đoạn chắn

=> DC = FE = 2,5 (cm)

Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)

=> \(DE=\sqrt{3}\left(cm\right)\)

Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)

29 tháng 8 2020

         Giải

Kẻ DH vuông góc với AB

\(\sin\widehat{A}=\frac{DH}{AD}\)

\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)

\(\cos A=\frac{AH}{AD}\)

\(AH=\cos60^o.2\)

\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)

\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)

\(=\frac{7\sqrt{3}}{2}\)

1 tháng 9 2019

Hạ CH và DK vuông góc với AB

Ta có:

A K = B H = 1 2 A D = 1 c m  

Từ đó: CD = 2,5cm

C H = 3 c m

S A B C D = A B + C D . C D 2 = 7 3 2 c m 2

27 tháng 8 2021

tia AB cắt DC tại E ta thấy 

AC là phân giác của góc ^DAE (gt) 

AC vuông DE (gt) 

=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác) 

lại có góc D = 60o nên ADE là tgiác đều 

=> C là trung điểm DE (AC đồng thời la trung tuyến) 

mà BC // AD => BC là đường trung bình của tgiác ADE 
 

Ta có: 

AB = DC = AD/2 và BC = AD/2 

gt: AB + BC + CD + AD = 20 

=> AD/2 + AD/2 + AD/2 + AD = 20 

=> (5/2)AD = 20 

=> AD = 2.20 /5 = 8 cm