A=1+2^2+2^3+...+2^63
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cần CM: \(\frac{1}{9-a}-\frac{12}{a^2+63}\ge\frac{1}{144}a^2-\frac{1}{16}\) (1)
\(\Leftrightarrow\)\(\frac{a^2+12a-45}{\left(9-a\right)\left(a^2+63\right)}\ge\frac{1}{144}a^2-\frac{1}{16}\)
\(\Leftrightarrow\)\(144\left(a^2+12a-45\right)\ge\left(a-3\right)\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\)
\(\Leftrightarrow\)\(\left(a-3\right)\left[144\left(a+15\right)-\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\right]\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)\left(a^4-6a^3+36a^2-234a+459\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)^2\left(a^3-3a^2+27a+153\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)^2\left[\left(a-3\right)^2\left(a+3\right)+36a+126\right]\ge0\) ( đúng )
Do đó (1) đúng => \(\Sigma_{cyc}\frac{1}{9-a}-\Sigma_{cyc}\frac{12}{a^2+63}\ge\frac{1}{144}\left(a^2+b^2+c^2\right)-\frac{3}{16}=0\)
\(\Rightarrow\)\(\Sigma_{cyc}\frac{12}{a^2+63}\le\Sigma_{cyc}\frac{1}{9-a}\le\Sigma_{cyc}\frac{1}{a+b}\) ( do \(a+b+c\le9\) )
Dấu "=" xảy ra khi a=b=c=3
c: Ta có: \(\dfrac{2}{5}\cdot\left[\left(\dfrac{3}{5}\right)^2:\left(-\dfrac{1}{5}\right)^2-7\right]\cdot\left(1000\right)^0\cdot\left|-\dfrac{11}{15}\right|\)
\(=\dfrac{2}{5}\cdot\left(\dfrac{9}{25}:\dfrac{1}{25}-7\right)\cdot1\cdot\dfrac{11}{15}\)
\(=\dfrac{2}{5}\cdot\dfrac{11}{15}\cdot2\)
\(=\dfrac{44}{75}\)
2A=2+2^2+...+2^64
2A-A=(2+2^2+...+2^64)-(1+2+2^2+...+2^63)
=>A=2^64-1
A=1+2+22+23+....+263
2A=2+22+23+....+263+264
2A-A=2+22+23+....+263+264-(1+2+22+23+....+263)
A=264-1
A = 1 + 2 + 22 + 23 + ... + 263
2A = 2 + 22 + ... + 264
2A - A = 264 - 1
A = 264 - 1
2:
a: A=1+2+2^2+2^3+2^4
=>2A=2+2^2+2^3+2^4+2^5
=>A=2^5-1
=>A=B
b: C=3+3^2+...+3^100
=>3C=3^2+3^3+...+3^101
=>2C=3^101-3
=>\(C=\dfrac{3^{101}-3}{2}\)
=>C=D
Ta có:
\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)
\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)
A=21+22+23+...+261+262+263
A=(21+22+23)+...+(261+262+263)
A=14+...+261.(21+22+23)
A=14+...+261.14 chia hết cho 14
tick ủng hộ mình nha
A = 21 + 22 + 23 + ... + 290
= 2 . (1 + 2 + 22) + .... + 288 . (1 + 2 + 22)
= 2 . 7 + .... + 288 . 7
= 7 . (2 + ... + 288) \(⋮\)7
\(\Rightarrow A⋮7\)
A = 21 + 22 + 23 + 24 + ... + 290
= (21 + 24) + (22 + 25) + ... + (287 + 290)
= 2 . (1 + 23) + 22 . (1 + 23) + .... + 287 . (1 + 23)
= 2 . 9 + 22 . 9 + ... + 287 . 9
= 9 . (2 + 22 + ... + 287) \(⋮\)9
\(\Rightarrow A⋮7,A⋮9\Rightarrow A⋮63\)
Vậy A chia hết cho 7 và 63
cả câu này nữa nha !!!
B=1/4^2+1/6^2 +1/8^2+...+1/98^2
chứng minh B<1/6
chứng minh
1/5 +1/14 +1/28+1/44+1/61+1/85+1/97<1/2
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(B=\frac{2}{3×5}+\frac{2}{5×7}+\frac{2}{7×9}+...+\frac{2}{19×21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{19}-\frac{1}{21}\)
\(B=\frac{1}{3}-\frac{1}{21}\)
\(B=\frac{2}{7}\)
A=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)+...+\(\frac{1}{66}\)
A=\(\frac{1}{1\cdot3}\) +\(\frac{1}{2\cdot3}\) +\(\frac{1}{2\cdot5}\)+...+\(\frac{1}{6\cdot11}\)
A=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{5}+...+\frac{1}{6}-\frac{1}{11}\)
A=\(\frac{1}{1}-\frac{1}{11}\)
=>A=\(\frac{10}{11}\)
B=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
2B=\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{19\cdot21}\)
2B=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
2B=\(\frac{1}{3}-\frac{1}{21}\)
2B=\(\frac{2}{7}\)
B=\(\frac{2}{7}:2\)
=>B=\(\frac{1}{7}\)
A = 1 + 22 + 23 + .... + 263
2A = 2 + 23 + 24 + ..... + 264
2A - A = ( 2 + 23 + 24 + ..... + 264 ) - ( 1 + 22 + 23 + .... + 263 )
A = 2 + 264 - 1
\(A=1+2^2+2^3+...+2^{63}\)
\(2A=2\left(1+2+2^2+2^3+...+2^{63}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{63}+2^{64}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{63}+2^{64}\right)-\left(1+2+2^2+2^3+...+2^{62}+2^{63}\right)\)
\(A=2^{64}-1\)