tim so tu nhien x de 3+x chia het cho 7 va 3+x chia het cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)123-5 .(x+5)= 48
5.(x+5) = 123 -48
5.(x+5) = 75
(x+5) = 75 : 5
( x+5) = 15
x = 15 - 5
x = 10
c; 15 ⋮ \(x+1\) (\(x\in\) N)
\(x+1\) \(\in\) Ư(15)
15 = 3.5
\(x+1\in\) Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
Lập bảng ta có:
\(x+1\) | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
\(x\) | -16 | -6 | -4 | -2 | 0 | 2 | 4 | 14 |
\(x\) \(\in\) N | loại | loại | loại | loại |
Theo bảng trên ta có: \(x\in\) {0; 2; 4; 14}
Vậy \(x\in\) {0; 2; 4; 14}
Để 3+x chia hết cho 7
Thì (3+x) thuộc bội chung của 7 (1)
Để 3+x chia hết cho 13
Thì (3+x) thuộc bội chung của 13 (2)
Từ (1) và (2)
Suy ra (3+x) thuộc bội chung nhỏ nhất của 7 và 13
Hay 3+x=91
<==> x= 88 ( đây là số nhỏ nhất phù hợp với yêu cầu )
Còn tìm số lớn hơn thì tương tự như trên