K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5 : Cho \(\Delta ABC\)có M, N là trung điểm của AB, AC. Lấy D và E lần lượt đối xứng với B, C qua N và M. CMR A,M,N thẳng hàngBài 6 : Cho \(\Delta ABC\)cân đỉnh A.\(\widehat{BAC}=20^o\)Trên cạnh AB lấy điểm E sao cho \(\widehat{BCE}=50^o\)Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^o\)Qua D kẻ đường thẳng song song với BC cắt AB tại F. Gọi O là giao điểm của BD và CFa) CM :\(\Delta AFC=\Delta ADB\)               ...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\)có M, N là trung điểm của AB, AC. Lấy D và E lần lượt đối xứng với B, C qua N và M. CMR A,M,N thẳng hàng

Bài 6 : Cho \(\Delta ABC\)cân đỉnh A.\(\widehat{BAC}=20^o\)Trên cạnh AB lấy điểm E sao cho \(\widehat{BCE}=50^o\)Trên cạnh AC lấy điểm D sao cho \(\widehat{CBD}=60^o\)Qua D kẻ đường thẳng song song với BC cắt AB tại F. Gọi O là giao điểm của BD và CF

a) CM :\(\Delta AFC=\Delta ADB\)                                                      d) CM \(\Delta EFD=\Delta EOD\)

b) CM :\(\Delta OFD;\Delta OBC\)là các tam giác đều                           e) Tính số đo góc BDE

c) Tính số đo góc EOB

Bài 7 ; Cho \(\Delta ABC,\widehat{A}=60^o\)Phân giác BD, CE cắt nhau tại O. Chứng mình rằng : 

a) \(\Delta DOE\)cân                                                     b) BE + CD = BC

Bài 8 : \(\Delta ABC\)và \(\Delta A'B'C'\)có AB = A'B', AC=A'C'. \(\widehat{A}\)\(\widehat{A'}\)bù nhau. Vẽ trung tuyến AM rồi kéo dài 1 đoạn MA=MD. CM : 

a) \(\widehat{ABD}=\widehat{A'}\)                                   b) AM = \(\frac{1}{2}\)B'C'

Bài 9 : Cho \(\Delta ABC\)M là trung điểm B. Trên nửa mặt phẳng không chứa C bờ AB vẽ tia Ax\(\perp\)AB, trên Ax lấy D sao cho AD = AB. Trên nửa mặt phẳng ko chứa B bờ là AC vẽ tia Ay \(\perp\)AC, trên Ay lấy E sao cho AE = AC. CMR :

a) BE=DC     b) BE \(\perp\)DC       c) AM = DE/2     d) AM \(\perp\)DE

0
Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta ABC\),...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
7 tháng 2 2021

giúp tui với!

3 tháng 12 2019

hình như đề bài sai

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0