cho pt x^2 + m^2 -2m+5-x-3 =0 . tìm GTLN của tổng 2 nghiệm của pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
Thay x=1 vào pt, ta được;
\(1-2\left(m-1\right)+2m-5=0\)
=>2m-4-2m+2=0
=>-2=0(vô lý)
a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)
b/ Pt có 2 nghiệm phân biệt
\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)
\(\to m\in \mathbb R\)
c/ Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)
Tổng bình phương các nghiệm là 10
\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)
\(\to 4m^2-4m+2=10\)
\(\leftrightarrow 4m^2-4m-8=0\)
\(\leftrightarrow m^2-m-2=0\)
\(\leftrightarrow m^2-2m+m-2=0\)
\(\leftrightarrow m(m-2)+(m-2)=0\)
\(\leftrightarrow (m+1)(m-2)=0\)
\(\leftrightarrow m+1=0\quad or\quad m-2=0\)
\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)
Vậy \(m\in\{-1;2\}\)
Sửa đề: \(x_2^2-x_1^2=2\)
Ta có: \(\Delta=\left[-\left(m-3\right)\right]^2-4\cdot1\cdot\left(-2m+2\right)\)
\(=\left(m-3\right)^2-4\left(-2m+2\right)\)
\(=m^2-6m+9+8m-8\)
\(=m^2+2m+1\)
\(=\left(m+1\right)^2\ge0\forall m\)
Do đó: Phương trình luôn có hai nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=m-3\\x_1\cdot x_2=-2m+2\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4\cdot x_1x_2\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(m-3\right)^2-4\left(-2m+2\right)\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=m^2-6m+9+8m-8=m^2-2m+1\)
\(\Leftrightarrow x_1-x_2=m-1\)
Ta có: \(x_2^2-x_1^2=2\)
\(\Leftrightarrow\left(x_2-x_1\right)\left(x_2+x_1\right)=2\)
\(\Leftrightarrow\left(1-m\right)\left(m-3\right)=2\)
\(\Leftrightarrow m-3-m^2+3m-2=0\)
\(\Leftrightarrow-m^2+4m-5=0\)
\(\Leftrightarrow m^2-4m+5=0\)(Vô lý)
Vậy: Không có giá trị nào của m để phương trình có hai nghiệm thỏa mãn \(x_2^2-x_1^2=2\)
\(\Delta'=4-2m\ge0\Rightarrow m\le2\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+4m-3\end{matrix}\right.\)
Đặt \(P=x_1+x_2-x_1x_2\)
\(P=2\left(m+1\right)-\left(m^2+4m-3\right)\)
\(P=-m^2-2m+5\)
\(P=-\left(m^2+2m+1\right)+6\)
\(P=-\left(m+1\right)^2+6\le6\)
\(\Rightarrow P_{max}=6\) khi \(m+1=0\Leftrightarrow m=-1\)
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt