K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :

AB=AD

AC=AE

=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông ) 

19 tháng 1 2022

bn tự vẽ nha :

a, Xét \(\Delta ADE\)

 có \(AD=AE\left(gt\right)\)

 \(\Rightarrow\Delta ADE\) là tam giác cân

b, Xét \(\Delta ABC\) và \(\Delta ADE\) có :

 \(AB=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{DAE}\) ( đối đỉnh )

\(AC=AE\left(gt\right)\)

\(\Rightarrow\Delta ABC=\Delta ADE\left(c.g.c\right)\)

\(\Rightarrow\widehat{EDA}=\widehat{ACB}\) ( hai góc tương ứng)

\(\Rightarrow ED\)//\(BC\)

19 tháng 1 2022

bn có thể trình bày rõ hơn ở phần a đc ko?

22 tháng 10 2016

Giúp mk đi khocroi

29 tháng 1 2022

- Gợi ý:

Câu 1:

a) - Sửa lại đề: Tam giác ABD=Tam giác ICE (c-g-c) do có AB=AC=CI, góc ABC=góc ACB=góc ECI, BD=CE.

b) Do tam giác ABD=Tam giác ICE nên AD=IE : 

AE+EI>AI=2AC=AB+AC

=>AE+AD>AB+AC.

Câu 2:

- Tam giác MBD=Tam giác NCE do góc MDB=góc CEN=900, BD=CE,

góc MBD=góc NCE. nên BM=CN

Câu 3:

- AB=AM+BM ; CI=CN+NI.

=>AM=NI.

=>AM+AN=AM+NI=AI=AB+AC.

-c/m MN>BC (c/m mệt lắm nên mình nói ngắn gọn).

MN cắt BC tại F =>MF>DF, NF>EF

MF+NF>DF+EF=DF+CF+CE=DF+CF+BD=BC =>MN>BC

29 tháng 1 2022

cảm ơn bạn nhiều ! 

23 tháng 8 2021

Lời giải:
a. Xét tam giác ABDABD và AEDAED có:

AB=AEAB=AE (gt)

ˆBAD=ˆEADBAD^=EAD^ (tính chất tia phân giác)

ADAD chung

⇒△ABD=△AED⇒△ABD=△AED (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra BD=EDBD=ED và ˆABD=ˆAEDABD^=AED^

⇒1800−ˆABD=1800−ˆAED⇒1800−ABD^=1800−AED^

⇒ˆDBM=ˆDEC⇒DBM^=DEC^

Xét tam giác DBMDBM và DECDEC có:

ˆBDM=ˆEDCBDM^=EDC^ (đối đỉnh)

BD=EDBD=ED (cmt)

ˆDBM=ˆDECDBM^=DEC^ (cmt)

⇒△DBM=△DEC⇒△DBM=△DEC (g.c.g)

2 tháng 6 2015

b)ta có AB=AD(giả thiết)

=> CA là đường trung tuyến của BD

CA vuông góc với BD (t/g ABC vuông tại A)

=>CA là đường cao của BD

mà CA là đường trung tuyến của BD(chứng minh trên)

=>t/g BCD cân tại C

=>CA cũng là p/g của t/g ABC

=>góc BCA= góc DCA

Xét t/g BEC và t/g DEC

góc BCA= góc DCA

BC=CD(t/g BCD cân tại C)

EC: cạnh chung

Suy ra t/g BEC= t/g DEC(c-g-c)

c) trên trung tuyến CA có CE/AC=6-2/6=2/3

=>ba đường trung tuyến của t/g BCD đồng quy tại E

=>DE là đường trung tuyến của BC

=>DE đi qua trung điểm BC