Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa
bài 1: em tự kẻ hình nha
a, Xét 2 tam giác AMB và CME ta có: góc AMB= góc CME( đối đỉnh), AM=MC(gt),BM=ME(gt)
Vậy 2 tam giác AMB=CME(c-g-c)
b, Ta có: AM=MC, BM=ME nên AECB là hình bình hành
Vậy AE=BC và AE song song với BC
c, Vì AEBC là hình bình hành nên góc BAC= góc ACE( so le trong do AB song song với CE vì AECB là hbh)
Vậy ACE=90 độ hay CE vuông góc với AC
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Hình ; tự vẽ
Xét tam giác ADB và tam giác ADE có :
\(\widehat{BAD}=\widehat{EAD}\) ( do AD là tia p/g của \(\widehat{BAC}\))
AB = AE ( gt )
AD là cạnh chung
nên tam giác ADB = tam giác ADE ( c.g.c )
=> DB=DE ( hai cạnh tương ứng )
b) Có : \(\widehat{DBA}+\widehat{DBK}=180^O\)( Hai góc kề bù )
Có : \(\widehat{DEA}+\widehat{DEC}=180^{O^{ }}\)( Hai góc kề bù )
mà \(\widehat{DEA}=\widehat{DBA}\)( Do tam giác ADB = tam giácADE ) ((đã chứng minh ở phần a ))
=> \(\widehat{DBK}=\widehat{DEC}\)
Xét tam giác DBK = tam giác DEC có :
\(\widehat{DBK}=\widehat{DEC}\) ( cm trên )
BD = ED ( do tam giác ADB = tam giác ADE )
\(\widehat{BDK}=\widehat{EDC}\) ( hai góc đối đỉnh )
nên...........
Lời giải:
a. Xét tam giác ABDABD và AEDAED có:
AB=AEAB=AE (gt)
ˆBAD=ˆEADBAD^=EAD^ (tính chất tia phân giác)
ADAD chung
⇒△ABD=△AED⇒△ABD=△AED (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra BD=EDBD=ED và ˆABD=ˆAEDABD^=AED^
⇒1800−ˆABD=1800−ˆAED⇒1800−ABD^=1800−AED^
⇒ˆDBM=ˆDEC⇒DBM^=DEC^
Xét tam giác DBMDBM và DECDEC có:
ˆBDM=ˆEDCBDM^=EDC^ (đối đỉnh)
BD=EDBD=ED (cmt)
ˆDBM=ˆDECDBM^=DEC^ (cmt)
⇒△DBM=△DEC⇒△DBM=△DEC (g.c.g)