chứng minh rằng nếu các số tự nhien a,b,c thỏa mãn điều kiện a^2+b^2=c^2 thì abc chia hết cho 60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng nếu các số tự nhiên a,b,c thỏa mãn điều kiện a^2 + b^2 = c^2 thì abc chia hết cho 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
Rồi suy ra abc chia hêt cho 3.4.5 = 60
Giả sử a,b,c đều không chia hết cho 3 thì phải chia 3 dư 1
thay vào chia 3 dư 2 còn chia 3 dư 1 (loại)
Do đó a,b,c phải tồn tại một số chia hết cho 3 ,
Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5
suy ra abc chia hêt cho 3.4.5 = 60
Lời giải:
Ta biết rằng một số chính phương choa $3$ có dư $0$ hoặc $1$
Giả sử trong ba số $a,b,c$ không có số nào chia hết cho $3$
Khi đó: \(a^2\equiv b^2\equiv c^2\equiv 1\pmod 3\)
Mà \(a^2+b^2=c^2\Rightarrow c^2=a^2+b^2\equiv 1+1\equiv 2\pmod 3\) (mâu thuẫn)
Do đó luôn tồn tại ít nhất một trong ba số chia hết cho $3$
\(\Rightarrow abc\vdots 3\)
Mặt khác: Một số chính phương khi chia $5$ có thể dư $0,1$ hoặc $4$
Nếu $a,b$ có ít nhất một số chia hết cho $5$ thì $abc$ chia hết cho $5$
Nếu $a,b$ không có số nào chia hết cho $5$ thì \(a^2,b^2\equiv 1,4\pmod 5\)
Xét các TH sau:
+) \(a^2\equiv 1, b^2\equiv 4\pmod 5\) hoặc ngược lại
\(\Rightarrow c^2=a^2+b^2\equiv 5\equiv 0\pmod 5\Rightarrow c^2\vdots 5\Rightarrow c\vdots 5\)
\(\Rightarrow abc\vdots 5\)
+) \(a^2\equiv b^2\equiv 1\pmod 5\Rightarrow c^2\equiv 2\not\equiv 0,1,4\pmod 5\) (vô lý)
+) \(a^2\equiv b^2\equiv 4\pmod 5\Rightarrow c^2\equiv 8\equiv 3\not\equiv 0,1,4\pmod 5\) (vô lý)
Vậy \(abc\vdots 5\)
Lại xét:
\(a^2+b^2=c^2\Rightarrow (a+b)^2-2ab=c^2\)
\(\Leftrightarrow 2ab=(a+b-c)(a+b+c)\)
Vì $a+b-c,a+b+c$ có cùng tính chẵn lẻ mà tích của chúng lại là số chẵn nên \(a+b-c, a+b+c\) chẵn
\(\Rightarrow 2ab=(a+b-c)(a+b+c)\vdots 4\Rightarrow ab\vdots 2\)
Đến đây ta thấy:
-Nếu \(a,b\vdots 2\Rightarrow ab\vdots 4\rightarrow abc\vdots 4\)
-Nếu $a,b$ có một số chẵn một số lẻ. Không mất tổng quát giả sử $a$ chẵn $b$ lẻ
\(a^2=c^2-b^2\)
$c$ chẵn thì $ac$ chia hết cho $4$ suy ra $abc$ chia hết cho $4$
$c$ lẻ:
Xét số chính phương lẻ có dạng
\(x^2=(4k\pm 1)^2\Rightarrow x^2-1=16k^2\pm 8k+1-1=16k^2\pm 8k\vdots 8\)
Do đó ta suy ra scp lẻ luôn chia 8 dư 1
\(\Rightarrow b^2\equiv c^2\equiv 1\pmod 8\Rightarrow a^2=c^2-b^2\vdots 8\)
\(\Rightarrow a\vdots 4\Rightarrow abc\vdots 4\)
Vậy trong mọi TH có thể $abc$ đều chia hết cho $4$
Ta thấy $abc$ chia hết cho $3,4,5$ mà $3,4,5$ đôi một nguyên tố cùng nhau nên $abc$ chia hết cho $60$
ko phải dạng vừa đâu!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Dễ chứng minh được với 1 số chính phương khi chia cho 7 ta chỉ có các khả năng dư: 0 , 1 , 2 , 4
Khi đó \(a^2+b^2\) chia 7 sẽ có các khả năng dư sau: 0 ; 1 ; 2 ; 3 ; 4 ; 6 ; 7
Mà theo đề bài \(a^2+b^2\) chia hết cho 7 nên sẽ chỉ duy nhất 1 khả năng là \(\hept{\begin{cases}a^2⋮7\\b^2⋮7\end{cases}}\)
Vì 7 là số nguyên tố => a và b đều chia hết cho 7
=> đpcm
a+b+c=a+2b chia hết cho 7 (b=c)
abc=100a+10b+c=100a+11b=98a+7b+2(a+2b)
Ta thấy 98a+7b = 7(14a+b) chia hết cho 7
mà a+2b chia hết cho 7 => 2(a+2b) chia hết cho 7
=> abc chia hết cho 7
abc = 100a + 10b + c = 98a + 2a + 7b + 2b + b + 2c - c = (98a + 7b) + (2a + 2b + 2c) + (b - c) = 7(14a + b) + 2(a + b + c) + (b - c) chia hết cho 7.
Mà 7(14a + b) chia hết cho 7 và 2(a + b + c) chia hết cho 7
\(\Rightarrow\)b - c chia hết cho 7
Mà 0\(\le\)b - c < 7
Vậy b - c = 0
giả thiết a, b, c nguyên; a² = b²+c²
* ta biết số chính phương: n² khi chia 3 dư 0 hoặc dư 1
từ a² = b²+c², thấy b² và c² khi chia 3 không thể cùng dư 1
vì nếu chúng cùng dư 1 thì a² = b²+c² chia 3 dư 2 vô lí
=> hoặc b², hoặc c² có ít nhất 1 số chia 3 dư 0 => b hoặc c chia hết cho 3
=> abc chia hết cho 3 (1)
* ta biết số n² chia 4 dư 0 hoặc dư 1
nếu n chẳn => n² chia 4 dư 0
nếu n lẻ: n = 2k+1 => (2k+1)² = 4k²+4k+1 chia 4 dư 1
từ a² = b²+c² => b² và c² khi chia 4 không thể cùng dư 1
vì nếu b² và c² chia 4 đều dư 1 => b²+c² = a² chia 4 dư 2 trái lí luận trên
=> hoặc b² hoặc c² (hoặc cả 2) chia 4 dư 0, chẳn hạn b² chia 4 dư 0
+ nếu c² chia 4 dư 0 => b và c đều chia hết cho 2 => abc chia hết cho 4
+ nếu c² chia 4 dư 1 => a² = b²+c² chia 4 dư 1 => a, c là 2 số lẻ
a = 2n+1 ; c = 2m+1; có: b² = a²-c² = (a-c)(a+c) = (2n-2m)(2n+2m+2)
=> b² = 4(n-m)(n+m+1) (**)
ta lại thấy nếu m, n cùng chẳn hoặc cùng lẻ => n-m chẳn
nếu m, n có 1 chẳn, 1 lẻ => m+n+1 chẳn
=> (m-n)(m+n+1) chia hết cho 2 => b² = 4(m-n)(m+n+1) chia hết cho 8
=> b chia hết cho 4 => abc chia hết cho 4
Tóm lại abc luôn chia hết cho 4 (2)
* lập luận tương tự thì thấy số n² chia cho 5 chỉ có thể dư 0, 1, 4
+ b² và c² chia 5 không thể cùng dư 1 hoặc 4
vì nếu cùng dư 1 => b²+c² = a² chia 5 dư 2
nếu cùng dư là 4 thì b²+c² = a² chia 5 dư 3
đều vô lí do a² chia 5 chỉ có thể dư 0, 1 hoặc 4
+ b² chia 5 dư 1 và c² chia 5 dư 4 (hoặc ngược lại)
=> b²+c² = a² chia 5 dư 0 => a chia hết cho 5 (do 5 nguyên tố)
+ nếu b² hoặc c² chia 5 dư 0 => b (hoặc c ) chia hết cho 5
Tóm lại vẫn có abc chia hết cho 5 (3)
Từ (1), (2, (3) => abc chia hết cho 3, 4, 5
=> abc chia hết cho [3,4,5] = 60