K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

giả thiết a, b, c nguyên; a² = b²+c²

* ta biết số chính phương: n² khi chia 3 dư 0 hoặc dư 1
từ a² = b²+c², thấy b² và c² khi chia 3 không thể cùng dư 1
vì nếu chúng cùng dư 1 thì a² = b²+c² chia 3 dư 2 vô lí
=> hoặc b², hoặc c² có ít nhất 1 số chia 3 dư 0 => b hoặc c chia hết cho 3
=> abc chia hết cho 3 (1)

* ta biết số n² chia 4 dư 0 hoặc dư 1
nếu n chẳn => n² chia 4 dư 0
nếu n lẻ: n = 2k+1 => (2k+1)² = 4k²+4k+1 chia 4 dư 1

từ a² = b²+c² => b² và c² khi chia 4 không thể cùng dư 1
vì nếu b² và c² chia 4 đều dư 1 => b²+c² = a² chia 4 dư 2 trái lí luận trên
=> hoặc b² hoặc c² (hoặc cả 2) chia 4 dư 0, chẳn hạn b² chia 4 dư 0
+ nếu c² chia 4 dư 0 => b và c đều chia hết cho 2 => abc chia hết cho 4
+ nếu c² chia 4 dư 1 => a² = b²+c² chia 4 dư 1 => a, c là 2 số lẻ
a = 2n+1 ; c = 2m+1; có: b² = a²-c² = (a-c)(a+c) = (2n-2m)(2n+2m+2)
=> b² = 4(n-m)(n+m+1) (**)
ta lại thấy nếu m, n cùng chẳn hoặc cùng lẻ => n-m chẳn
nếu m, n có 1 chẳn, 1 lẻ => m+n+1 chẳn
=> (m-n)(m+n+1) chia hết cho 2 => b² = 4(m-n)(m+n+1) chia hết cho 8
=> b chia hết cho 4 => abc chia hết cho 4
Tóm lại abc luôn chia hết cho 4 (2)

* lập luận tương tự thì thấy số n² chia cho 5 chỉ có thể dư 0, 1, 4
+ b² và c² chia 5 không thể cùng dư 1 hoặc 4
vì nếu cùng dư 1 => b²+c² = a² chia 5 dư 2
nếu cùng dư là 4 thì b²+c² = a² chia 5 dư 3
đều vô lí do a² chia 5 chỉ có thể dư 0, 1 hoặc 4
+ b² chia 5 dư 1 và c² chia 5 dư 4 (hoặc ngược lại)
=> b²+c² = a² chia 5 dư 0 => a chia hết cho 5 (do 5 nguyên tố)
+ nếu b² hoặc c² chia 5 dư 0 => b (hoặc c ) chia hết cho 5
Tóm lại vẫn có abc chia hết cho 5 (3)

Từ (1), (2, (3) => abc chia hết cho 3, 4, 5
=> abc chia hết cho [3,4,5] = 60

15 tháng 10 2021

Ai giúp gấp nhé:D

 

15 tháng 10 2021

Ta có : a2 + b2 = c2 + d2

a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) 2 nên là hợp số

Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d ) 

= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) 2

a + b + c + d 2 nên cũng là hợp số

26 tháng 8 2021

1.

Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:

+ Ví dụ 1. Các số 7; 9 và 2.

Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2. 

+ Ví dụ 2. Các số 13; 19 và 4. 

Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4. 

+ Ví dụ 3. Các số 33; 67 và 10.

Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10. 

Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán. 

Qua bài tập 6 này, ta rút ra nhận xét như sau: 

Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng. 

Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p. 

2.

Vì (a+b)⋮ma+b  ⋮  m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)

Tương tự, vì a⋮ma  ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h 

Thay a = m. h vào (1) ta được: m.h + b = m.k 

Suy ra b = m.k – m.h = m.(k – h)  (tính chất phân phối của phép nhân với phép trừ).

Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có   m(k−h)⋮mmk-h  ⋮  m

Vậy b⋮m.b  ⋮  m.  

11 tháng 8 2021

Mấy bạn có nhớ mình hoq? Mình là Trí Nguyễn nè, do nick đó mình đăg nhập= face mà giờ hoq hiểu sao đăg nhập nó lại bị lỗi, nên giờ mình pk lập nick khác né☺

11 tháng 8 2021

a) 650 ; 560 ; 506

b) 605 ; 650 ; 560 

c) 650 ; 560

Chúc bạn học tốt!! ^^

6 tháng 8 2019

a)     1)  254;524;542;452

         2) 245;425

b)      1) 756

          2) 675

c)       1) 425

          2) 254

6 tháng 8 2019

a)

1) số 452; 542; 254; 524 chia hết cho 2

2) số 245; 425 chia hết cho 5

b)

1)  756

2) 675

c)

1) 425

2) 254

học tốt!!!

27 tháng 2 2016

a=1;b=2;c=3. cứ thử đi 100% là đúng

11 tháng 3 2021

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.