Cho p(x)=1+x^2+x^4+...+x^(2n-2) q(x)=1+x+x^2+...+x^(n-1) tìm n thộc N để p(x) chia hết cho q(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x+1}{5}=\frac{2x-7}{3}\)
\(\Rightarrow3\left(x+1\right)=5\left(2x-7\right)\)
\(\Leftrightarrow3x+3=10x-35\)
\(\Leftrightarrow3x-10x=-35-3\)
\(\Leftrightarrow-7x=-38\)
\(\Rightarrow x=\frac{38}{7}\)
Ta có : \(\frac{x}{4}=\frac{9}{x}\)
\(\Rightarrow x^2=9.4\)
=> x2 = 36
=> x = +4;-4
bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài
a, Ta có :\(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}\)
\(=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}+x^{2n}+1\right)\left(x^{4n}-x^{2n}+1\right)\)
\(=\left(x^{4n}+2x^{2n}+1-x^{2n}\right)\left(x^{4n}-x^{2n}+1\right)\)
\(=\left[\left(x^{2n}+1\right)-\left(x^n\right)^2\right]\left(x^{4n}-x^{2n}+1\right)\)
\(=\left(x^{2n}+1-x^n\right)\left(x^{2n}+1+x^n\right)\left(x^{4n}-x^{2n}+1\right)\)
\(\Leftrightarrow x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\left(\forall x\right)\)
\(3x\left(x+2\right)-20x-40=0\)
\(\Rightarrow3x\left(x+2\right)-20\left(x+2\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=2\\x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-2\end{cases}}}\)
Vậy \(x=\left\{\frac{2}{3};-2\right\}\)
khó gì:
cách 1 : biến đổi vế trước giống vế sau
cách 2 : lấy vế trước trừ vế sau
bài này làm ra thì dài lắm
nha , sau đó tui giải cho
à , kết bạn luôn cho nó vui
a) Vậy x-1 \(\in\)Ư(6). x-1 \(\in\){ 1;2;3;6 }. x \(\in\){ 2;3;4;7 }
b) Vậy 2x+3 \(\in\)Ư(14). 2x+3 \(\in\){ 7 }. x \(\in\){ 2 } ( vì 2x+3 là số lẻ và x \(\in\)N }
x2 + 2x + 1 chia hết cho x + 2
x(x + 2) + 1 chia hết cho x + 2
=> 1 chia hết cho x + 2
=> x + 2 thuộc Ư(1) = {1 ; -1}
Xét 2 trường hợp , ta có :
x + 2 = 1 => x = -1
x + 2 = -1 = > x = -3