chứng minh rằng:(1980a-1985b):5
(dấu : bên trên là chia hết cho 5 nhé!)
mong mọi người giúp đỡ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4\(^{2019}\)+ 1 = 4\(^{2016}\). 4\(^3\)+ 1 = ...6 . 64 + 1 = ....4 + 1 = ....5 \(⋮\) 5
(các số tận cùng là 4 khi nâng lũy thừa bậc 4n đều có chữ số tận cùng là 6)
a/ 4^2019 + 1
= (4^2)^1009 x 4 + 1
= (.....6)^1009 x 4 + 1
= .....6 x 4 + 1
= ......4 + 1
= .....5
Vì 4^2019 + 1 có tận cùng là 5
Suy ra 4^2019 + 1 chia hết cho 5
Vậy 4^2019 + 1 chia hết cho 5
b/ 5^2017 + 1
= ( 5^2 ) ^1008 x 5 + 1
= 25^1008 x 5 + 1
hay = 25.25.25....25 x 5 + 1 ( có tất cả 1008 thừa số 25 ) ......... Tự làm nha!
b) a(a+1)(a+2)
+) Giả sử a là số lẻ
=> a+1 là số chẵn và chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
+) Giả sử a là số chẵn
=> a chia hết cho 2 => a(a+1)(a+2) chia hết cho 2
Vậy a(a+1)(a+2) chia hết cho 2 với mọi a thuộc N (1)
+) Giả sử a không chia hết cho 3 nên a chia 3 dư 1 hoặc dư 2
Nếu a chia 3 dư 1 thì a+2 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Nếu a chia 3 dư 2 thì a+1 chia hết cho 3 => a(a+1)(a+2) chia hết cho 3
Vậy a(a+1)(a+2) chia hết cho 3 với mọi a thuộc N (2)
Từ (1) và (2) => a(a+1)(a+2) chia hết cho 2 và 3 với mọi a thuộc N
_HT_
a) 1980a - 1995b
Ta có: 1980a luôn có chữ số tận cùng là 0 vì 0 nhân với số nào cũng đều có chữ số tận cùng là 0
1995b sẽ có chữ số tận cùng là 0 nếu b là số chẵn và ngược lại, 1995b sẽ có chữ số tận cùng là 5 nếu b là số lẻ
Từ đó => 1980a-1995b có tận cùng là : 0-5 = 5 hoặc 0-0= 0
Mà số có chữ số tận cùng là 0 hoặc 5 thì đều chia hết cho 5
Vậy 1980a-1995b chia hết cho 5 với mọi a,b thuộc N (1)
Ta có: 1980 chia hết cho 3 => 1980a cũng chia hết cho 3 với mọi a
1995 chia hết cho 3 => 1995b cũng chia hết cho 3 với mọi b
Vậy 1980a-1995b chia hết cho 3 với mọi a,b thuộc N (2)
Từ (1) và (2) => 1980a-1995b chia hết cho 3 và 5 với mọi a,b thuộc N
=> ĐPCM
_HT_
1980a+1995b=15.132a + 15.133b=15(132a+133b) luôn chia hết cho 15
=> 1980a+1995b chia hết cho 15 với mọi a, b
ta có a+b chia hết cho 5 thì tổng chữ số tận cùng của a và b là 5 hoặc 0
Lập bảng ra ta sẽ có bất cứ số nào lũy thừa 5 lên đều bất biến chữ số tận cùng nên sẽ chia hết cho 5^2
nhập hội ha
Do A có 30 số hạng, ta nhóm 3 số thành 1 nhóm nên vừa đủ 10 nhóm và không dư số nào.
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^30
= (2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^28+2^29+2^30)
= 2(1+2+2^2)+2^4(1+2+2^2)+...+2^28(1+2+2^2)
= 2.7 + 2^4 .7 + ... + 2^28 .7
= 7(2+2^4+...+2^28) chia hết cho7 (DPCM)
Cho S=5+52+53+...+52004 chứng minh S chia hết cho 126 và chia hết cho 65. Mong các bạn giúp đỡ mình!
S = 5 + 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004
5S = 5^2 + 5^3 + 5^4 + 5^5 + 5^6 + ... + 5^2004 + 5^2005
=> 4S = 5^2005 - 5 = 5 (5^2004 - 1) => S = 5 (5^2004 - 1)/4
Để chứng minh S chia hết cho 126 ta chứng minh 5 (5^2004 - 1) chia hết cho 126.4=504=7.8.9
+ 7: Có 5^2 = 25 chia 7 dư (-3) => 5^2004 = (5^2)^1002 đồng dư vs (-3)^1002 = 3^1002 trong phép chia cho 7.
Lại có 3^3 = 27 chia 7 dư (-1) => 3^1002 = (3^3)^334 đồng dư vs (-1)^334 = 1 trong phép chia cho 7 => 3^1002 chia 7 dư 1
=> (5^2004 -1) chia hết cho 7
+ 8: Có 5^2 = 25 chia 8 dư 1 => 5^2004 = (5^2)^1002 đồng dư vs 1^1002 =1 trong phép chia cho 8
=> 5^2004 chia 8 dư 1 => (5^2004 - 1) chia hết cho 8
+ 9: Có 5^2 = 25 chia 9 dư (-2) => 5^2004 = (5^2)^1002 đồng dư vs (-2)^1002 = 2^1002 trong phép chia cho 9
Lại có: 2^3 = 8 chia 9 dư (-1) => 2^1002 = (2^3)^334 đồng dư vs (-1)^334 =1 trong phép chia cho 9
=> 2^1002 chia 9 dư 1
Suy ra 5^2004 chia 9 dư 1 => (5^2004 - 1) chia hết cho 9
Vì 7,8,9 đôi một ng tố cùng nhau nên (5^2004 - 1) chia hết cho 7.8.9 = 504 => đpcm.
Để CM S chia hết cho 65 = 5.13 ta chứng minh (5^2004 - 1) chia hết cho 13
Có 5^2 = 25 chia 13 dư (-1) => 5^2004 đồng dư vs (-1)^1002 = 1 trong phép chia cho 13 => 5^2004 chia 13 dư 1 => 5^2004 -1 chia hết cho 13
Vậy S chia hết cho 65
Tick nha
\(A=5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3\left(25-5+1\right)=5^3.21=5^3.7.3⋮7\left(đpcm\right)\)
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
(1980a-1985b)
Ta có:
1980 chia hết cho 5
=> 1980a chia hết cho 5; 1985 chia hết cho 5
=> 1985b chia hết cho 5
=> (1980a-1985b) chia hết cho 5 (ĐPCM)
DPCM la gi v