K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

1.

a, Phương trình có nghiệm khi: 

\(\left(m+2\right)^2+m^2\ge4\)

\(\Leftrightarrow m^2+4m+4+m^2\ge4\)

\(\Leftrightarrow2m^2+4m\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)

b, Phương trình có nghiệm khi:

\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)

\(\Leftrightarrow2m^2+6m\le0\)

\(\Leftrightarrow-3\le m\le0\)

13 tháng 8 2021

2.

a, Phương trình vô nghiệm khi:

\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)

\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)

\(\Leftrightarrow4m^2-7< 0\)

\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)

b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)

\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)

 Phương trình vô nghiệm khi:

\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)

\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)

\(\Leftrightarrow m^2-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

NV
11 tháng 1

\(\Leftrightarrow m.cosx+\left(2m-1\right)sinx+3-m=y\left(cosx+sinx-2\right)\)

\(\Leftrightarrow\left(m-y\right)cosx+\left(2m-y-1\right)sinx=m-2y-3\)

Pt có nghiệm khi:

\(\left(m-y\right)^2+\left(2m-y-1\right)^2\ge\left(m-2y-3\right)^2\)

\(\Leftrightarrow2y^2+\left(2m+10\right)y-4m^2-2m+8\le0\)

\(\Rightarrow\dfrac{-m-5-\sqrt{9m^2+14m+9}}{2}\le y\le\dfrac{-m-5+\sqrt{9m^2+14m+9}}{2}\)

\(\Rightarrow y_{min}=\dfrac{-m-5-\sqrt{9m^2+14m+9}}{2}\le3\)

\(\Rightarrow\sqrt{9m^2+14m+9}\ge-m-11\)

BPT này đúng với mọi m. Vậy bài toán thỏa mãn với mọi m

11 tháng 1

Em cảm ơn anh ạ! 

NV
24 tháng 10 2020

3.

Theo điều kiện của pt lượng giác bậc nhất:

\(m^2+\left(3m+1\right)^2\ge\left(1-2m\right)^2\)

\(\Leftrightarrow10m^2+6m+1\ge4m^2-4m+1\)

\(\Leftrightarrow3m^2+5m\ge0\Rightarrow\left[{}\begin{matrix}m\ge0\\m\le-\frac{5}{3}\end{matrix}\right.\)

4.

\(\Leftrightarrow1-sin^2x-\left(m^2-3\right)sinx+2m^2-3=0\)

\(\Leftrightarrow-sin^2x-m^2sinx+2m^2+3sinx-2=0\)

\(\Leftrightarrow\left(-sin^2x+3sinx-2\right)+m^2\left(2-sinx\right)=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2-sinx\right)+m^2\left(2-sinx\right)=0\)

\(\Leftrightarrow\left(2-sinx\right)\left(sinx-1+m^2\right)=0\)

\(\Leftrightarrow sinx=1-m^2\)

\(\Rightarrow-1\le1-m^2\le1\)

\(\Rightarrow m^2\le2\Rightarrow-\sqrt{2}\le m\le\sqrt{2}\)

NV
24 tháng 10 2020

1.

Bạn xem lại đề, \(sin^2x\left(\frac{x}{2}-\frac{\pi}{4}\right)\) là sao nhỉ?Có cả x trong lẫn ngoài ngoặc?

2.

ĐKXĐ: \(sinx\ne0\)

\(\left(2sinx-cosx\right)\left(1+cosx\right)=sin^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)=1-cos^2x\)

\(\Leftrightarrow\left(2sinx-cosx\right)\left(1+cosx\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\sinx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

19 tháng 1 2017

Đáp án D

Hàm số xác định với mọi x

⇔  2sin2x + 4sinx cosx – (3 + 2m)cos2x + 2 ≤ 0 ∀x ∈ R  (1)

cos x = 0 => (1)  đúng

cos x ≠ 0 khi đó ta có: (1) ⇔ 2tan2x + 4tanx – (3 + 2m) + 2(1 + tan2x) ≥ 0

⇔ 4tan2x + 4tanx    1 + 2m ∀x ∈ R 

⇔ (2tanx + 1)2 ≥ 2 + 2m    ∀x ∈ R  ⇔ 2 + 2m ≤ 0 ⇔  m ≤ -1    

3/2pi<x<2pi

=>sin x<0; cosx>0

sin x+cosx=-1/2

=>(sinx+cosx)^2=1/4

=>1+2*sinx*cosx=1/4

=>2*sin x*cosx=-3/4

=>sinx*cosx=-3/8

mà sin x+cosx=-1/2

nên \(sinx=\dfrac{-1-\sqrt{7}}{4};cosx=\dfrac{-1+\sqrt{7}}{4}\)

NV
10 tháng 10 2020

a/

\(\left(m+1\right)^2+\left(m-1\right)^2\ge\left(2m+3\right)^2\)

\(\Leftrightarrow2m^2+12m+7\le0\)

\(\Leftrightarrow\frac{-6-\sqrt{22}}{2}\le m\le\frac{-6+\sqrt{22}}{2}\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m-1\right)^2+4m\ge m^4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m^4-\left(m+1\right)^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m^2+m+1\right)\left(m^2-m-1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le\frac{1+\sqrt{5}}{2}\)

c/ \(\Leftrightarrow\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}=m\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{3}\right)+\frac{1}{2}=m\)

Do \(-\frac{1}{2}\le sin\left(2x-\frac{\pi}{3}\right)\le\frac{3}{2}\Rightarrow-\frac{1}{2}\le m\le\frac{3}{2}\)

1 tháng 6 2021

1.

\(sinx-\sqrt{2}cos3x=\sqrt{3}cosx+\sqrt{2}sin3x\)

\(\Leftrightarrow sinx-\sqrt{3}cosx=\sqrt{2}cos3x+\sqrt{2}sin3x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{\sqrt{2}}cos3x+\dfrac{1}{\sqrt{2}}sin3x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin\left(3x+\dfrac{\pi}{4}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=3x+\dfrac{\pi}{4}+k2\pi\\x-\dfrac{\pi}{3}=\pi-3x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7\pi}{24}-k\pi\\x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{7\pi}{24}-k\pi;x=-\dfrac{3}{4}x+\dfrac{13\pi}{48}+\dfrac{k\pi}{2}\)

1 tháng 6 2021

2.

\(sinx-\sqrt{3}cosx=2sin5\text{​​}x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=sin5x\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=sin5x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=5x+k2\pi\\x-\dfrac{\pi}{3}=\pi-5x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2}\\x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm \(x=-\dfrac{\pi}{12}-\dfrac{k\pi}{2};x=\dfrac{2\pi}{9}+\dfrac{k\pi}{3}\)