K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

A=x2-2x+2

A=(x2-2x+1)+1

A=(x-1)2+1

(x-1)2\(\ge\)0 với mọi x

=> (x-1)2+1 >0 hay A>0

Vậy A luôn dương với mọi x,y,z

B=x2+y2+z2+4x-2y-4z+10

B=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1

B=(x+2)2+(y-1)2+(z-2)2+1

(x+2)2\(\ge\)0 với mọi x

(y-1)2\(\ge\)0 với mọi y

(z-2)2\(\ge\)0 với mọi z

=>(x+2)2+(y-1)2+(z-2)2+1>0 hay B>0

Vậy B luôn dương với mọi x,y,z

C=x2+y2+2x-4y+6

C=(x2+2x+1)+(y2-4y+4)+1

C=(x+1)2+(y-2)2+1

(x+1)2\(\ge\)0 với mọi x

(y-2)2\(\ge\)0 với mọi y

=>(x+1)2+(y-2)2+1>0 hay C>0

Vậy C luôn dương với mọi x,y,z

26 tháng 11 2018

a/ \(A=x^2-2x+2\\A=x^2-2x+1+1\\ A=\left(x-1\right)^2+1>0 \)

b/ \(B=x^2+y^2+z^2+4x-2y-4z+10\)

\(B=x^2+4x+4+y^2-2y+1+z^2-4z+4+1\)

\(B=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\)

c/ \(C=x^2+y^2+2x-4y+6\)

\(C=x^2+2x+1+y^2-4y+4+1\)

\(C=\left(x+1\right)^2+\left(y-2\right)^2+1>0\)

15 tháng 1 2018

Có : x^2+y^2+z^2+4x-2y-4z+10

= (x^2+4x+4)+(y^2-2y+1)+(z^2-4x+4)+1

= (x+2)^2+(y-1)^2+(z-2)^2+1 >= 1

=> (x+2)^2+(y-1)^2+(z-2)^2 luôn dương với mọi x,y,z

15 tháng 1 2018

\(x^2+y^2+z^2+4x-2y-4z+10\)

\(=\left(x^2+4x+4\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)+1\)

\(=\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1\)

Vì  \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\)\(\Leftrightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x+2\right)^2+\left(y-1\right)^2+\left(z-2\right)^2+1>0\) 

\(\Rightarrow\)\(đpcm\)

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

31 tháng 10 2017

=(x-1)2+1

vì (x-1)2\(\ge0\forall x\)

=>(x-1)2+1\(\ge1\)

vậy A luôn dương với mọi x

B=x

=x2+2x+1+y2-4y+4+1

=(x2+2x+1)+(y2-4y+4)+1

=(x+1)2+(y-2)2+1

do (x+1)2\(\ge0\forall x\)

(y-2)2\(\ge0\forall y\)

=>(x+1)2+(y-2)2\(\ge0\)

=>(x+1)2+(y-2)2+1\(\ge1\)

=>B\(\ge1\)

vậy B luôn dương với mọi x;y

C=

=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1

=(x+2)2+(y-1)2+(z-2)2+1

do (x+2)2\(\ge0\forall x\)

(y-1)2\(\ge0\forall y\)

(\(\)z-2)2\(\ge0\forall z\)

=>(x+2)2+(y-1)2+(z-2)2\(\ge0\)

=>(x+2)2+(y-1)2+(z-2)2+1\(\ge1\)

=>C\(\ge1\)

vậy C luôn dương với mọi x;y;z

2 tháng 11 2017

bài 2: tìm x

a)\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+1+4=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy x=1; y=-2

b)\(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2.3-3.y=0\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)

Vậy x=2; y=3

14 tháng 6 2017

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

25 tháng 6 2019

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

23 tháng 6 2017

a) 

\(=x^2+2.1,5x+1.5^2+0,75\)

\(=\left(x+1.5\right)^2+0,75\)

Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương

b) 

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)

Lập luận tương tự câu a), được biểu thức luôn dương

c)

\(=x^2+2xy+y^2+x^2-2x+1+1\)

\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)

Lập luận tương tự

13 tháng 7 2021

\(a.\)

\(A=9x^2-6xy+2y^2+1\)

\(A=\left(3x\right)^2-2\cdot3x\cdot y+y^2+y^2+1\)

\(A=\left(3x-y\right)^2+\left(y^2+1\right)\ge0\)

\(b.\)

\(B=x^2-2x+y^2+4y+6\)

\(B=x^2-2x+1+y^2+4y+4+1\)

\(B=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

\(c.\)

\(C=x^2-2x+2\)

\(C=x^2-2x+1+1\)

\(C=\left(x-1\right)^2+1\ge1\)

13 tháng 7 2021

a) A=9x2-6xy+2y2+1

    A=(3x)2-2.3x.y+y2+y2+1

    A=(3x-y)2+(y2+1)≥0

Câu b, c tương tự câu a

 

6 tháng 7 2018

1/

\(M=3x^2-4x+3=3\left(x^2-\frac{4}{3}x+1\right)=3\left(x^2-2x\cdot\frac{2}{3}+\frac{4}{9}\right)+\frac{5}{3}=3\left(x-\frac{2}{3}\right)^2+\frac{5}{3}\ge\frac{5}{3}>0\)

\(N=5x^2-10x+2018=5\left(x^2-2x+1\right)+2013=5\left(x-1\right)^2+2013\ge2013>0\)

\(P=x^2+2y^2-2xy+4y+7=\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)+3=\left(x-y\right)^2+\left(y+2\right)^2+3\ge3>0\)

2/

\(A=10x-6x^2+7=-6x^2+10x+7=-6\left(x^2-\frac{10}{6}x+\frac{25}{36}\right)-\frac{11}{6}=-6\left(x-\frac{5}{6}\right)^2-\frac{11}{6}\le-\frac{11}{6}< 0\)

\(B=-3x^2+7x+10=-3\left(x^2-\frac{7}{3}x+\frac{49}{36}\right)-\frac{311}{12}=-3\left(x-\frac{7}{6}\right)^2-\frac{311}{12}\le-\frac{311}{12}< 0\)

\(C=2x-2x^2-y^2+2xy-5=\left(2x-x^2-1\right)-\left(x^2-2xy+y^2\right)-4=-\left(x^2-2x+1\right)-\left(x-y\right)^2-4=-\left(x-1\right)^2-\left(x-y\right)^2-4\)\(\le-4< 0\)

13 tháng 8 2023

a) Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\) và \(\dfrac{3}{4}>0\) nên

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)