Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2+ y2-2x+4y+5 =0
<=> (x2-2x ) + ( y2+ 4y) +4+1 =0
<=> (x2-2x+1) +( y2+2.y.2 + 22) = 0
<=> (x-1)2+(y+2)2 =0
⇔( x-1)2 =0 => x=1 và (y+2)2=0 => y= -2
b) 4x^2+x^2+ 9y^2-12xy-6x+9=0
=>(4x^2-12xy+9y^2)+(x^2-6x+9)=0
=>(2x-3y)^2 + (x-3)^2=0
=>2x-3y=0 và x-3=0
=> x=3 và y=2
(x^-2x+1)+(y^2+4y+4)=0
=(x-1)^2+(y-1)^2=0. vì:(x-1)^2 > hoặc = 0
1.
a. x2 - 2x + 1 = 0
x2 - 2x*1 + 12 = 0
(x-1)2 = 0
............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)
1, Tìm x biết:
a, x2 - 2x +1 = 0
(x-1)2 = 0
x-1 = 0
x = 1. Vậy ...
b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30
25x2 +10x + 1 - (25x2 -9) = 30
25x2 +10x + 1 - 25x2 +9 = 30
10x + 10 =30
10(x+1) = 30
x+1 =3
x = 2. vậy ...
c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5
(x3 - 1) - x(x2 -4) = 5
x3 - 1 - x3 + 4x = 5
4x - 1 = 5
4x = 6
x = \(\dfrac{3}{2}\) .vậy ...
d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15
x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15
x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15
24x + 25 = 15
24x = -10
x = \(\dfrac{-5}{12}\) vậy ...
a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0
\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)
\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)
\(-5x-8=0\)
\(x=-\frac{8}{5}\)
Mai mik làm mấy bài kia sau
a)
\(A=x^2-4x+1=x^2-2.2x+2^2-3\)
\(=(x-2)^2-3\)
Vì \((x-2)^2\geq 0, \forall x\Rightarrow A\geq 0-3=-3\)
Vậy GTNN của $A$ là $-3$ khi $x=2$
b) \(B=(x-2)(x-6)+7=x^2-6x-2x+12+7\)
\(=x^2-8x+19=(x^2-2.4x+4^2)+3\)
\(=(x-4)^2+3\)
Vì \((x-4)^2\geq 0, \forall x\Rightarrow B\geq 0+3=3\)
Vậy GTNN của $B$ là $3$ khi $x=4$
c)
\(C=4x-x^2=4-(x^2-4x+4)=4-(x-2)^2\)
Vì \((x-2)^2\geq 0\Rightarrow C\leq 4-0=4\)
Vậy GTLN của $C$ là $4$ khi $x=2$
d) \(D=x^2-2x+y^2-4y+16=(x^2-2x+1)+(y^2-4y+4)+11\)
\(=(x-1)^2+(y-2)^2+11\)
Vì \((x-1)^2\geq 0; (y-2)^2\geq 0, \forall x,y\)
\(\Rightarrow D\geq 0+0+11=11\)
Vậy GTNN của $D$ là $11$ khi \(\left\{\begin{matrix} x-1=0\\ y-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=2\end{matrix}\right.\)
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
A=x 2−2x+2
=x2-2x+1+1
=(x2-2x+1)+1
=(x-1)2+1
vì (x-1)2\(\ge0\forall x\)
=>(x-1)2+1\(\ge1\)
vậy A luôn dương với mọi x
B=x2+y2+2x−4y+6
=x2+2x+1+y2-4y+4+1
=(x2+2x+1)+(y2-4y+4)+1
=(x+1)2+(y-2)2+1
do (x+1)2\(\ge0\forall x\)
(y-2)2\(\ge0\forall y\)
=>(x+1)2+(y-2)2\(\ge0\)
=>(x+1)2+(y-2)2+1\(\ge1\)
=>B\(\ge1\)
vậy B luôn dương với mọi x;y
C= x2+y2+z2+4x−2y−4z+10
=x2+4x+4+y2-2y+1+z2-4z+4+1
=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1
=(x+2)2+(y-1)2+(z-2)2+1
do (x+2)2\(\ge0\forall x\)
(y-1)2\(\ge0\forall y\)
(\(\)z-2)2\(\ge0\forall z\)
=>(x+2)2+(y-1)2+(z-2)2\(\ge0\)
=>(x+2)2+(y-1)2+(z-2)2+1\(\ge1\)
=>C\(\ge1\)
vậy C luôn dương với mọi x;y;z
bài 2: tìm x
a)\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+1+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy x=1; y=-2
b)\(5x^2+9y^2-12xy-6x+9=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2.3-3.y=0\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
Vậy x=2; y=3