K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

Trần Việt Hoàng !!! Em xem lại đề nhé! Cô nghĩ là M= - x^2+2xy-4y^2+2x+10y-8

21 tháng 11 2018

\(6M=-6x^2+12xy-24y^2+12x+60y-48\)

\(=(-4x^2+12xy+9y^2)+(-2x^2+12x)+(-15y^2+60y)-48\)

\(=-(2x-3y)^2-2(x^2-6x+9)-15(y^2-4y+4)+30\)

\(=-(2x-3y)^2-2(x-3)^2-15(y-2)^2+30\le30\)

Dấu " = " xảy ra khi : 2x - 3y = 0 ; x - 3 = 0 , y - 2 = 0 => \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

Vậy GTLN của M là \(\frac{30}{8}=5\)tại x = 3 , y = 2

Chúc bạn học tốt :>

29 tháng 7 2019

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   12   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

Vì  với mọi x; y nên A ≥ -17 với mọi x; y

=> A = -17 

⇔ x − y + 1 = 0 y − 4 = 0 ⇔ x = y − 1 y = 4 ⇔ x = 3 y = 4

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: B

20 tháng 3 2019

A   =   x 2   +   2 y 2   –   2 x y   +   2 x   –   10 y     ⇔   A   =   x 2   +   y 2   +   1   –   2 x y   +   2 x   –   2 y   +   y 2   –   8 y   +   16   –   17     ⇔   A   =   ( x 2   +   y 2   +   1 2   –   2 . x . y   +   2 . x . 1   –   2 . y . 1 )   +   ( y 2   –   2 . 4 . y   +   4 2 )   –   17     ⇔   A   =   ( x   –   y   +   1 ) 2   +   ( y   –   4 ) 2   –   17

 

Vì x - y + 1 2 ≥ 0 y - 4 2 ≥ 0  với mọi x, y nên A ≥ -17 với mọi x, y

=> A = -17 ó x - y + 1 = 0 y - 4 = 0 ó x = y - 1 y = 4 ó x = 3 y = 4  

Vậy A đạt giá trị nhỏ nhất là A = -17 tại   x = 3 y = 4

Đáp án cần chọn là: C

13 tháng 1 2022

\(A=\left[\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y-1=3\\y=4\end{matrix}\right.\)

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=10-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)\)

\(=10-\left(x-y-1\right)^2-3\left(y-2\right)^2\le10\)

Vậy \(MaxA=10\), đạt được khi và chỉ khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:
$-A=x^2-2xy+4y^2-2x-10y+3$

$=(x^2-2xy+y^2)+3y^2-2x-10y+3$

$=(x-y)^2-2(x-y)+3y^2-12y+3$

$=(x-y)^2-2(x-y)+1+3(y^2-4y+4)-10$

$=(x-y+1)^2+3(y-2)^2-10\geq 0+0-10=-10$

$\Rightarrow A\leq 10$

Vậy $A_{\max}=10$. Giá trị này đạt tại $x-y+1=y-2=0$

$\Leftrightarrow y=2; x=1$

b: \(B=x^3-8y^3-x^3+4x-4x+8y^3+2021=2021\)

8 tháng 11 2021

Phân tích đa thức sau thành phân tử 

a, 4x³ - 10x² + 2x

b, x² - 3x + 2

Giúp mk vs m.n

15 tháng 10 2023

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)