Giúp mình, please
Bài1
Tìm x, biết x là số tự nhiên nhỏ nhất chia cho 8,10,15,20; theo thứ tự dư5,7,12,17
Bài2
Chứng minh:2x+1 và 6x+5 là hai số nguyên tố cùng nhau(A ngược x thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số tự nhiên nhỏ nhất đó là a .(a ϵ N;a \(\ge\) 20)
vì khi chia cho 8,10,15,20 dư lần lượt là 5,7,12,17
=>a+3\(⋮\)8;10;15;20
=>a+3ϵBC(8;10;15;20)
ta có :
8=23
10=2.5
15=3.5
20=22.5
=>BCNN(8;10;15;20)=23.3.5=120
=>BC(8;10;15;20)={0;120;240;360;...;4680;4800;4920.....}
=>aϵ{-3;117;237;357;....;4677;4797;4917;.....}
Mà a\(⋮\)41 Trong các số trên ta chỉ thấy 4797 \(⋮\)41
Vậy số cần tìm là 4797.
Gọi số tự nhiên cần tìm là a
Theo đề cho ta có :
a : 8 ( dư 5 )
a : 10 ( dư 7 )
a : 15 ( dư 12 )
a : 20 ( dư 17 )
\(\Rightarrow\) a + 3 \(⋮\) 8; 10; 15; 20
\(\Rightarrow\) a + 3 \(\in\) BC( 8; 10; 15; 20 )
Ta có:
8 = 23
10 = 2 x 5
15 = 3 x 5
20 = 22 x 5
\(\Rightarrow\) BCNN( 8; 10; 15; 20 ) = 23 x 3 x 5 = 120
\(\Rightarrow\) BC( 8; 10; 15; 20 ) = B(120) = { 0; 120; 240; 360; .....}
\(\Rightarrow\) a + 3 \(\in\) { 0; 120; 240; 360; .....}
\(\Rightarrow\) a \(\in\) { -3; 117; 237; 357; ......}
Mà a \(⋮\) 41
Nên a = 4797
Vậy số tự nhiên cần tìm là 4797
a : 8;10;15;20 dư 5;7;12;17
=> a + 2chia hết cho 8;10;15;20
=> a + 2 là BCNN(8;10;15;20)
8 = 23 ; 10=2.5
12 = 22 . 3 ; 17 = 17
=> BCNN (8;10;12;17) = 23 . 6.17 = 680
=> a + 2 = 680
=> a = 680 - 2
=> a = 678
Vậy số cần tìm là 678
Theo bai ra ta co:
A=8x+7
A=31x+28
(voi x, b nguyen duong va nho nhat)
=>8x+7=31b+28
=>8x-31b=21
=>x=(21+31b)/8
=3+4b-(3+b)/8
x nguyen duong va nho nhat khi 3+b nho nhat va chia het cho 8; (3+b)/8 < 3+4b
=>b=5
=>x=(21+31b)/8=22
Thay vao x ta được x=8a+7=8.22+7=183
Vậy x=183
Mk hướng dẫn thôi chứ ko còn thời gian nx
Đầu tiên bạn lấy x+n sao cho x+n chia hết cho 8;10;15;20
Sau đó bạn tìm BCNN(các số trên)
Sau đó bạn lấy BCNN(các số trên)-n là ra
2, GỌi UCLN(2x+1;6x+5)=d
Ta có:
2x+1 chia hết cho d
6x+5 chia hết cho d
=> 6x+5-3(2x+1) chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Nhưng ta có: 6x+5;2x+1 là các số lẻ
=> d =1
=> (ĐPCM)
Gọi ƯCLN( 2x+1, 6x+5) là d
- 2x+1 chia hết cho d hay 3.(2x+1) chia hết cho d = 6x+3 chia hết cho d
( chia hết bạn viết kí hiệu của dấu chia hết nha)
- 6x+5 chia hết cho d
Ta có : ( 6x+5)-( 6x+3) chia hết cho d
= 6x+5 - 6x+3 chia hết cho d
= 2 chia hết cho d
=> d thuộc tập hợp 1;2
( d thuộc tập hợp 1;2 bn viết kí hiệu nha)
Mà 6x+5 và 2x+1 là số lẻ nên d = 1
Vậy UwCLN ( 2x+1, 6x+5) = 1 hay hai số 2x+1 và 6x+5 là hai số nguyên tố cùng nhau.