3x^2+3x+2=(x+6) căn bậc hai của (3x^2-2x-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\sqrt{2x-3}-7=4\)
\(\sqrt{2x-3}=11\)
\(\left(\sqrt{2x-3}\right)^2=11^2\)
\(2x-3=121\)
\(2x=124\)
\(x=62\)
c) \(\sqrt{3x-2}+7=0\)
\(\sqrt{3x-2}=-7\)
\(\Rightarrow x=\varnothing\)
bạn Hoàng Thanh Huyền ơi! cảm ơn đã là giúp nhưng phần a) bạn làm đến dong thứ 3 thì mk bt làm r nhưng mũ 2 phải chia ra hai trường hợp chứ :))
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(\sqrt{x+3}-\sqrt{2x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow\sqrt{x+3}=\sqrt{2x-1}+\sqrt{3x-2}\)
\(\Leftrightarrow x+3=2x-1+3x-2+2\sqrt{\left(2x-1\right)\left(3x-2\right)}\)
\(\Leftrightarrow3-2x=\sqrt{\left(2x-1\right)\left(3x-2\right)}\) (\(x\le\frac{3}{2}\))
\(\Leftrightarrow\left(3-2x\right)^2=\left(2x-1\right)\left(3x-2\right)\)
\(\Leftrightarrow4x^2-12x+9=6x^2-7x+2\)
\(\Leftrightarrow2x^2+5x-7=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{7}{2}< \frac{2}{3}\left(l\right)\end{matrix}\right.\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
2) ĐKXĐ: \(\dfrac{x-6}{x-2}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2< 0\\x-6\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x\ge6\end{matrix}\right.\)
3) ĐKXĐ: \(\dfrac{2x-4}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-2}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow2\le x< 5\)