Cho hình chữ nhật ABCD có AB = 12 cm, AD = 5 cm. Kẻ AH vuông góc BD (H thuộc
BD).
Đường thẳng AH cắt DC tại K.
a/ Tính độ dài BD, AH?
b/ Chứng minh HB.HK = HD.HA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔBAD vuông tại A có AH là đường cao
nên \(DH\cdot DB=AD^2\left(1\right)\)
Xét ΔADM vuông tại D có DH là đường cao
nên \(AH\cdot AM=AD^2\left(2\right)\)
Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)
b: Xét ΔADM vuông tại D có DH là đường cao ứng với cạnh huyền AM
nên \(AH\cdot AM=AD^2\left(1\right)\)
Xét ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền DB
nên \(DH\cdot DB=AD^2\left(2\right)\)
Từ (1) và (2) suy ra \(DH\cdot DB=AH\cdot AM\)
a) theo đinh lí Py ta go ta có: BD2 = AB2 + AD2 = 62 + 82 => BD = 10
có SABC = 1/2 AD. AB = 1/2 8.6= 24
=> SABC = 1/2 AH. DB => AH = SABC *10 * 1/2 = 4.8
Do mình tính nhẩm nên có sai sót chỗ đáp số nào đó bạn thông cảm cho mình nha
a: ABCD là hình chữ nhật
=>\(BD^2=BA^2+BC^2\)
=>\(BD^2=5^2+12^2=169\)
=>BD=13(cm)
b: Xét ΔADB vuông tại A có AH là đường cao
nên \(AH\cdot BD=AB\cdot AD\)
=>\(AH\cdot13=5\cdot12=60\)
=>\(AH=\dfrac{60}{13}\left(cm\right)\)
c: \(\widehat{HDK}+\widehat{HBC}=90^0\)(ΔBDC vuông tại C)
\(\widehat{HIB}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)
mà \(\widehat{HBC}=\widehat{HBI}\left(I\in BC\right)\)
nên \(\widehat{HDK}=\widehat{HIB}\)
Xét ΔHDK vuông tại H và ΔHIB vuông tại H có
\(\widehat{HDK}=\widehat{HIB}\)
Do đó: ΔHDK đồng dạng với ΔHIB
=>\(\dfrac{HD}{HI}=\dfrac{HK}{HB}\)
=>\(HD\cdot HB=HK\cdot HI\)(1)
Xét ΔABD vuông tại A có AH là đường cao
nên \(AH^2=HD\cdot HB\left(2\right)\)
Từ (1) và (2) suy ra \(AH^2=HK\cdot HI\)
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔADK vuông tại D có DH là đường cao ứng với cạnh huyền AK, ta được:
\(AH\cdot AK=AD^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔADB vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:
\(DH\cdot DB=AD^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(AH\cdot AK=DH\cdot DB\)
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:
\(DH\cdot DB=AD^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔADK vuông tại D có DH là đường cao ứng với cạnh huyền AK, ta được:
\(AH\cdot AK=AD^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(DH\cdot DB=AH\cdot AK\)
a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm
Xét tam giác ABD vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABD
\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)
b, Xét tam giác AHB vuông tại H đường cao HI
\(AH^2=IA.AB\)( hệ thức lượng ) (1)
Xét tam giác ABD vuông tại A đường cao AH
\(AH^2=DH.BH\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )
a) Xét ΔAHD vuông tại H và ΔBAD vuông tại A có
\(\widehat{ABD}\) chung
Do đó: ΔAHD∼ΔBAD(g-g)
Áp dụng định lí Pytago vào ΔADH vuông tại H, ta được:
\(AH^2+HD^2=AD^2\)
\(\Leftrightarrow HD^2=AD^2-AH^2=5^2-4^2=9\)
hay HD=3(cm)
Ta có: ΔAHD∼ΔBAD(cmt)
nên \(\dfrac{AH}{BA}=\dfrac{HD}{AD}=\dfrac{AD}{BD}\)
\(\Leftrightarrow\dfrac{4}{AB}=\dfrac{3}{5}\)
hay \(AB=\dfrac{20}{5}cm\)
Vậy: \(AB=\dfrac{20}{5}cm\)
b) Xét ΔAHD vuông tại H và ΔBHA vuông tại H có
\(\widehat{HAD}=\widehat{HBA}\left(=90^0-\widehat{ADH}\right)\)
Do đó: ΔAHD∼ΔBHA(g-g)
⇔\(\dfrac{AH}{BH}=\dfrac{HD}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HA^2=HB\cdot HD\)(đpcm)