CMR: a,2222\(^{5555}\) +5555\(^{2222}\) ⋮7
b, 333\(^{555^{777}}\) +777\(^{555^{333}}\) ⋮10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta có công thức: Nếu số hạng là các chữ số n và có m số hạng:
n x [m x 100 + (m - 1) x 101 + (m - 2) x102 + ………. +2 x 10m-2 + 1 x 10m-1]
(Bạn nhớ công thức trên sẽ làm đc bài tập 1 cách dễ dàng)
a, A=2+22+222+2222+...+222...2(10 chữ số 2)
Ta có:
A = 2 + 22 + 222 + 2222 + ... + 2222222222
A = 2 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
A = 2 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
A = 2 . 1234567900 = 2 469 135 800
b, B=3+33+333+3333+...+333...3(10 chữ số 3)
Ta có:
B = 3 + 33 + 333 + 3333 + ... + 3333333333
B = 3 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
B = 3 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
B = 3 . 1234567900 = 3 703 703 700.
c, C=5+55+555+5555+...+555...5(5 chữ số 5)
Ta có:
C = 5 + 55+ 555 + 5555 + ... + 5555555555
C = 5 (10.1 + 9.10 + 8.100 + 7.1000 + ... + 1.1000000000)
C = 5 (10 + 90 + 800 + 7000 + 60000 + 500000 + 4000000 + 30000000 + 200000000 + 1000000000)
C = 5 . 1234567900 = 6 172 839 500.
Dài quá đó bạn !
555 ^ 2 ≡ 5 (mod 10)
555 ^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777đồng dư với 333^5
Do 333^5=333^2.333^3≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2) Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.
\(555\equiv-1\left(\text{mod 4}\right)\Rightarrow555^{777}\equiv\left(-1\right)^{777}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^777 chia 4 dư 3. }\)
\(555^{333}\equiv\left(-1\right)^{333}\left(\text{mod 4}\right)\equiv\left(-1\right)\left(\text{mod 4}\right)\)
\(\Rightarrow\text{555^333 chia 4 dư 3}\)
\(\text{Đến đây dễ rồi -__-}\)
Ta có:
5552≡5 (mod 10)
5553≡5( mod 10)
5555=5552.5553≡5.5≡5(mod 10)
---> 555777≡5(mod 10)
Suy ra:
333555777đồng dư với 3335
Do 3335=3332.3333≡3(mod 10)
Vậy chữ số tận cùng của 333555777là 3 (1)
Làm tương tự với 777555333có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra 333555777+777555333có chữ số tận cùng là 0
Vậy 333555777+777555333chia hết cho 10 (đpcm)
:v
Ta có :
\(555^2≡5\) (mod 10)
\(555^3≡5\) (mod 10)
\(555^5=555^2.555^3≡5.5≡5\) (mod 10)
=> \(555^777≡5\) (mod 10)
=> \(333^{555^{777}}\) đồng dư với \(333^5\)
Do \(333^5=333^2.333^3≡3\) (mod 10)
Vậy chữ số tận của \(333^{555^{777}}\) là 3 (1)
Làm tương tự ta được \(777^{555^{333}}\) có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra:
\(333^{555^{777}}+777^{555^{333}}\)3 có chữ số tận cùng là 0
=> \(333^{555^{777}}+777^{555^{333}}\) chia hết cho 10.
Vậy B chia hết cho 10. ( đpcm )
a, Ta có : 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13)
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13)
Cộng lại ta có:
222^333 + 333^222 ≡ 0 (mod 13) đpcm
b, 2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7)
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7)
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm
( tick đúng cho mink nha)
555^2≡5 (mod 10)
555"^3≡5 (mod 10)
555^5=555^2.555^3≡5.5≡5 (mod 10)
~~> 555^777≡5 (mod 10)
Suy ra
333^555^777 đồng dư với 333^5
Do 333^5=3332.3333≡3 (mod10)
Vậy chữ số tận của 333^555^777 là 3 . (1)
Làm tương tự ta được 777^555^333 có chữ số tận cùng là 7 (2)
(1) và (2)Suy ra 333^555^777 +777^555^333 có chữ số tận cùng là 0
Vậy 333^555^777 +777^555^333 chia hết cho 10.