giúp tui với n^3 - 3n chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì [3n+4]⋮n-1
mà 3n-3⋮n-1
⇒7⋮n-1
⇒n-1ϵƯ[7]={1;7}
⇒n-1=1 hoặc n-1=7
⇒n=2 hoặc n=8
vậy n=2 hoặc n=8
Lời giải:
$3n+4\vdots n-1$
$\Rightarrow 3(n-1)+7\vdots n-1$
$\Rightarrow 7\vdots n-1$
$\Rightarrow n-1\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{2; 0; 8; -6\right\}$
Mà $n$ là stn nên $n\in\left\{2; 0; 8\right\}$
\(2n+3⋮3n+4\Leftrightarrow6n+9⋮3n+4\)
\(\Leftrightarrow2\left(3n+4\right)+1⋮3n+4\Leftrightarrow1⋮3n+4\)
\(\Rightarrow3n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
3n + 4 | 1 | -1 |
3n | -3 | -5 |
n | 1 | -5/3 |
\(2n+3⋮3n+4\)
Ta có: \(2n+3=3\left(2n+3\right)=6n+9\)
\(3n+4⋮3n+4\Leftrightarrow2\left(3n+4\right)⋮3n+4\Leftrightarrow6n+8⋮3n+4\Leftrightarrow\left(6n+9\right)-\left(6n+8\right)⋮3n+4\)
\(\Leftrightarrow1⋮3n+4\Leftrightarrow3n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow n\in\left\{-1;\frac{-5}{3}\right\}\)
Vì n là số tự nhiên không chia hết cho 2 hay 3 nên n có dạng \(6k+1\) hoặc \(6k+5\).
Nếu \(n=6k+1\) thì hiển nhiên \(n^2-1⋮6\) và \(3n=18k+3\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Nếu \(n=6k+5\) thì \(n^2-1⋮6\) (cái này dễ cm nên mình không trình bày ở đây) và \(3n=18k+15\) chia 6 dư 3, suy ra \(4n^2+3n+5=4\left(n^2-1\right)+3n+9\) chia hết cho 6.
Ta có đpcm.
1) 4n - 3 chia hết cho 2n + 1
4n + 2 - 5 chia hết cho 2n + 1
5 chia hết cho 2n + 1
2n + 1 thuộc U(5) = {-5;-1;1;5}
n thuộc {-3 ; -1 ; 0 ; 2}
B = 3ⁿ⁺³ + 2ⁿ⁺³ + 3ⁿ⁺¹ + 2ⁿ⁺²
= (3ⁿ⁺³ + 3ⁿ⁺¹) + (2ⁿ⁺³ + 2ⁿ⁺²)
= 3ⁿ⁺¹.(3² + 1) + 2(2ⁿ⁺² + 2ⁿ⁺¹)
= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺² + 2ⁿ⁺¹)
= 2.3ⁿ⁺¹.5 + 2.(2ⁿ⁺² + 2ⁿ⁺¹)
= 2.(3ⁿ⁺¹.6 + 2ⁿ⁺² + 2ⁿ⁺¹) ⋮ 2 (1)
B = (3ⁿ⁺³ + 3ⁿ⁺¹) + (2ⁿ⁺³ + 2ⁿ⁺²)
= 3.(3ⁿ⁺² + 3ⁿ) + 2ⁿ⁺².(2 + 1)
= 3.(3ⁿ⁺² + 3ⁿ) + 2ⁿ⁺².3
= 3.(3ⁿ⁺² + 3ⁿ + 2ⁿ⁺²) ⋮ 3 (2)
Từ (1) và (2) ⇒ B ⋮ 6
a,n2+3n+3 chia hết cho n+1
=>n2+n+2n+2+1 chia hết cho n+1
=>n(n+1)+2(n+1)+1 chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 E Ư(1)={1;-1}
=>n E {0;-2}
b, n2+4n+2 chia hết cho n+2
=>n2+2n+2n+4-2 chia hết cho n+2
=>n(n+2)+2(n+2)-2 chia hết cho n+2
=>2 chia hết cho n+2
=>n+2 E Ư(2)={1;-1;2;-2}
=>n E {-1;-3;0;-4}
c, n2-2n+3 chia hết cho n-1
=>n2-n-n+1+4 chia hết cho n-1
=>n(n-1)-(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
Thế n=4 vào thấy trật lất.