Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n+3⋮3n+4\Leftrightarrow6n+9⋮3n+4\)
\(\Leftrightarrow2\left(3n+4\right)+1⋮3n+4\Leftrightarrow1⋮3n+4\)
\(\Rightarrow3n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
3n + 4 | 1 | -1 |
3n | -3 | -5 |
n | 1 | -5/3 |
\(2n+3⋮3n+4\)
Ta có: \(2n+3=3\left(2n+3\right)=6n+9\)
\(3n+4⋮3n+4\Leftrightarrow2\left(3n+4\right)⋮3n+4\Leftrightarrow6n+8⋮3n+4\Leftrightarrow\left(6n+9\right)-\left(6n+8\right)⋮3n+4\)
\(\Leftrightarrow1⋮3n+4\Leftrightarrow3n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow n\in\left\{-1;\frac{-5}{3}\right\}\)
1) 4n - 3 chia hết cho 2n + 1
4n + 2 - 5 chia hết cho 2n + 1
5 chia hết cho 2n + 1
2n + 1 thuộc U(5) = {-5;-1;1;5}
n thuộc {-3 ; -1 ; 0 ; 2}
a,n2+3n+3 chia hết cho n+1
=>n2+n+2n+2+1 chia hết cho n+1
=>n(n+1)+2(n+1)+1 chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 E Ư(1)={1;-1}
=>n E {0;-2}
b, n2+4n+2 chia hết cho n+2
=>n2+2n+2n+4-2 chia hết cho n+2
=>n(n+2)+2(n+2)-2 chia hết cho n+2
=>2 chia hết cho n+2
=>n+2 E Ư(2)={1;-1;2;-2}
=>n E {-1;-3;0;-4}
c, n2-2n+3 chia hết cho n-1
=>n2-n-n+1+4 chia hết cho n-1
=>n(n-1)-(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
a) ta có 2n+5 chia het cho n+2
=> 2(n+2)+1 chia het cho n+2
nên n+2 thuộcƯ(1)
=> n = -3 hoac n=-1
vì [3n+4]⋮n-1
mà 3n-3⋮n-1
⇒7⋮n-1
⇒n-1ϵƯ[7]={1;7}
⇒n-1=1 hoặc n-1=7
⇒n=2 hoặc n=8
vậy n=2 hoặc n=8
Lời giải:
$3n+4\vdots n-1$
$\Rightarrow 3(n-1)+7\vdots n-1$
$\Rightarrow 7\vdots n-1$
$\Rightarrow n-1\in \left\{1; -1; 7; -7\right\}$
$\Rightarrow n\in \left\{2; 0; 8; -6\right\}$
Mà $n$ là stn nên $n\in\left\{2; 0; 8\right\}$
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
\(\frac{n^2+3n+6}{n+3}=\frac{n^2+3n}{n+3}+\frac{6}{n+3}\)
\(=\frac{n\left(n+3\right)}{n+3}+\frac{6}{n+3}\)
\(=n+\frac{6}{n+3}\)
Để thỏa đề bài thì 6 phải chia hết cho n + 3
\(\Rightarrow n+3\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
n + 3 = 1
n = -2 ( loại )
n + 3 = 2
n = -1 ( loại )
n + 3 = 3
n = 0 ( loại )
n + 3 = 6
n + 3 ( nhận )
Vậy n = 3 thì thỏa đề
Thế n=4 vào thấy trật lất.