K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:
Ta có:

\(A=a(a+b)(a+c)(a+b+c)+b^2c^2=[a(a+b+c)][(a+b)(a+c)]+b^2c^2\)

\(=(a^2+ab+ac)(a^2+ab+ac+bc)+b^2c^2\)

\(=(a^2+ab+ac)^2+bc(a^2+ab+ac)+b^2c^2\)

Đặt \(a^2+ab+ac=x; bc=y\) thì:

\(A=x^2+xy+y^2=(x+\frac{y}{2})^2+\frac{3}{4}y^2\)

\((x+\frac{y}{2})^2\geq 0, y^2\geq 0\Rightarrow A\geq 0\)

Ta có đpcm.

9 tháng 8 2017

đầu bài có phải ntn ko?

\(\overline{abab}=\overline{cdcd}\left(a,b,c,d\ne0\right)\). Chứng minh \(\overline{a2}.\overline{b2c2}.\overline{d2a2}.\overline{b2c2}.\overline{d2}=\left(a-b\right)2.\left(c-d\right)2\)

Mà cái đầu bài bn viết khó hiểu thế hum.

21 tháng 6 2023

Ta chọn abc sao cho

a^2 b^2 +b^2 c^2=(c^2-ab)tất cả mũ 2

 => c = a + b

ta chọn c = a + b thì :

 a^2 b^2+b^2 c^2+c^2 a^2=(b^2+a^2+ab)^2

17 tháng 2 2019

\(1\ge a,b,c\ge0\)\(\Rightarrow b^2\le b;c^3\le c\)

\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\) (1)

\(1\ge a,b,c\ge0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

\(\Leftrightarrow abc+a+b+c-ab-bc-ca-1\le0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)

\(a,b,c\ge0\Rightarrow abc\ge0\Rightarrow-abc\le0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1\) (2)

Từ (1) và (2) \(\Rightarrow a+b^2+c^3-ab-bc-ca\le1\)

banhqua

NV
14 tháng 9 2021

Ta có:

\(\dfrac{a}{b}+\dfrac{a}{b}+\dfrac{b}{c}\ge3\sqrt[3]{\dfrac{a^2}{bc}}=\dfrac{3a}{\sqrt[3]{abc}}\)

\(\dfrac{b}{c}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{3b}{\sqrt[3]{abc}}\)

\(\dfrac{c}{a}+\dfrac{c}{a}+\dfrac{a}{b}\ge\dfrac{3c}{\sqrt[3]{abc}}\)

Cộng vế:

\(3\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)

\(\Rightarrow\) đpcm

NV
11 tháng 4 2019

Áp dụng BĐT quen thuộc \(a^2+b^2+c^2\ge ab+ac+bc\)

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+ac+bc\right)\)

\(\Rightarrow\left(a+b+c\right)^2\ge3abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3abc\left(a+b+c\right)\)

\(\Rightarrow a+b+c\ge3abc\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đề bài bị ngược dấu

8 tháng 4 2019

dễ

2 tháng 4 2017

\(VT=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{ca^2}{a^2+1}\)

\(VT=3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2\sqrt{b^2}=2b\\c^2+1\ge2\sqrt{c^2}=2c\\a^2+1\ge2\sqrt{a^2}=2a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\\\dfrac{bc^2}{c^2+1}\le\dfrac{bc^2}{2c}=\dfrac{bc}{2}\\\dfrac{ca^2}{a^2+1}\le\dfrac{ca^2}{2a}=\dfrac{ca}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ca}{2}\)

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge3-\dfrac{ab+bc+ca}{2}\) ( 1 )

Theo hệ quả của bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3\ge ab+bc+ca\)

\(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ca}{2}\)

\(\Rightarrow\dfrac{3}{2}\le3-\dfrac{ab+bc+ca}{2}\) ( 2 )

Từ (1) và (2)

\(\Rightarrow3-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\right)\ge\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

5 tháng 1 2018

quá hay !!!!