tìm x,y biết : 2^x+2^y=2^x+y
Hộ cái nha mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x+y=2 vao biểu thức A:
A=2(x+2)(y+2)
=2(xy+2x+2y+4)
=2xy +4x+4y+8
=2xy+4(x+y)+8
thay x+y=2 và xy= -3 vao A:
A= 2×(-3)+4 × 2 +8 = 10
Đặt
\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)= k
Ta có: x=2k+1
y=3k+2
z=4k+3
Theo đề ta có: 2x+3y-z=50
2(2k+1)+3(3k+2)
Xin lỗi mình giải tiếp nè, lỡ tay bấm lộn
Theo đè ta có: 2x+3y-z=50
\(\Rightarrow\) 2(2k+1)+3(3k+2}-(4z+3)=50
\(\Rightarrow\) 4k+2+9k+6-4z-3=50
\(\Rightarrow\) 9k+5=50
\(\Rightarrow\) 9k=45
\(\Rightarrow\) k=5
Thay k=5 vào, ta có: x= 2.5+1=11
y= 3.5+2=17
z=4.5+3=23
Nhớ cho mình nha
(x-1)^2 và (x-y)^2 luôn lớn hơn hoặc bằng 0
(x-1)^2=0 =>x-1=0=>x=1
(x-y)^2=0=>x-y=0=>1-y=0=>y=1
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow x=52;y=63;z=36\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{7}=\frac{z}{4}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{14}=\frac{y}{21}\\\frac{y}{21}=\frac{z}{12}\end{cases}\Rightarrow}\frac{x}{14}=\frac{y}{21}=\frac{z}{12}}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(\Rightarrow\hept{\begin{cases}x=3.14=42\\y=3.21=63\\z=3.12=36\end{cases}}\)
\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019^2\)
\(\Leftrightarrow M=2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019^2-2x^2y^2-x^2-y^2-1\)(Đặt M = .... cho gọn)
Có \(S=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
\(\Rightarrow S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+M\)
\(\Rightarrow S^2=2x^2y^2+x^2+y^2+2019^2-2x^2y^2-x^2-y^2-1\)
\(\Rightarrow S=\sqrt{2019^2-1}\)
y + y x 3/2 + y x 7/2 = 252
y x ( 1 + 3/2 + 7/2 ) = 252
y x 6 = 252
y = 252 : 6
y =42
\(3x^2+y^2+2x-2y-1=0\)
\(\Leftrightarrow x^2+2x\left(x+y\right)-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow x^2+2-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
\(\Leftrightarrow x-y+1=0\)
\(\Leftrightarrow y=x+1\)
Thế vào \(x\left(x+y\right)=1\)
\(\Rightarrow x\left(2x+1\right)=1\)
\(\Leftrightarrow2x^2+x-1=0\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=0\\x=\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
cái này mà bn phán toán lớp 1 thì mk đành lặng im >,<
==học tốt==
#Nấm#