K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Gắn hệ trục Oxy vào chiếc cổng, gọi chiều cao của cổng là h ta vẽ lại parabol như dưới đây:

Phương trình parabol mô phỏng cổng có dạng \({y^2} = 2px\)

Theo giả thiết \(AB = 2{y_A} = 192 \Rightarrow {y_A} = 96,OC = h \Rightarrow M\left( {h - 2;95,5} \right),A\left( {h;96} \right)\)

Thay tọa độ các điểm \(M\left( {h - 2;95,5} \right),A\left( {h;96} \right)\) vào phương trình \({y^2} = 2px\) ta có:

\(\left\{ \begin{array}{l}95,{5^2} = 2p\left( {h - 2} \right)\\{96^2} = 2ph\end{array} \right. \Rightarrow \left\{ \begin{array}{l}p = \frac{{383}}{{16}}\\h \simeq 192,5\end{array} \right.\)

Vậy chiều cao của cổng gần bằng 192,5 m

12 tháng 6 2018

Đáp án D

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Theo bài ra ta có:

AB=8m => AO=OB=4m

AC=0,5m => OC=OA-AC=3,5m

=> Parabol đi qua điểm A(-4;0); B(4;0); C(-3,5; 2,93)

Do đó ta có các phương trình sau:

\(a.{( - 4)^2} + b( - 4) + c = 0 \Leftrightarrow 16a - 4b + c = 0\)

\(a{.4^2} + 4b + c = 0 \Leftrightarrow 16a + 4b + c = 0\)

\(a.{( - 3,5)^2} + b( - 3,5) + c = 2,93 \Leftrightarrow 12,25a - 3,5b + c = 2,93\)

Từ 3 phương trình trên, ta có: \(a = \frac{{ - 293}}{{375}};b = 0;c = \frac{{4688}}{{375}}\)

Tọa độ đỉnh là \(I\left( {0;\frac{{4688}}{{375}}} \right)\)

Vậy chiều cao của cổng parabol là \(\frac{{4688}}{{375}} \approx 12,5m\)

=> Kết quả của An tính ra không chính xác.

7 tháng 12 2022

làm chi tiết đi bạn giúp mik vs

14 tháng 6 2018

Phương pháp:

+ Tìm phương trình Parabol

+ Diện tích hình phẳng giới hạn bởi 

+ Tính diện tích hình chữ nhật từ đó tính diện tích phần trồng hoa và tính số tiền cần dùng để mua hoa trang trí.

Cách giải:

Gắn hệ trục tọa độ Oxy như hình vẽ, ta có Parabol đi qua các điểm  A 4 ; 0 ; N 2 ; 6

Hoành độ giao điểm của Parabol và trục hoành là

19 tháng 6 2019

Chọn hệ trục tọa độ Oxy như hình vẽ.

Parabol đối xứng qua Oy nên có dạng 

Vì (P) đi qua B(4;0) và N(2;6) nên 

Diện tích hình phẳng giới hạn bởi (P) và trục Ox là

Diện tích phần trồng hoa là 

Do đó số tiền cần dùng để mua hoa là 

Chọn D.

NV
28 tháng 9 2019

Đặt hệ trục tọa độ Oxy vào cổng với gốc tọa độ trùng điểm chính giữa hai chân cổng

Gọi 2 chân cổng là A và B, điểm cao nhất là C, điểm có độ cao 43m là D

\(\Rightarrow A\left(-81;0\right)\) ; \(B\left(81;0\right)\); \(D\left(71;43\right)\)

Phương trình parabol có dạng \(y=ax^2+bx+c\)

Thay tọa độ A; B; C vào ta được hệ:

\(\left\{{}\begin{matrix}81^2.a-81b+c=0\\81^2a+81b+c=0\\71^2a+71b+c=43\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{43}{1520}\\b=0\\c=\frac{81^2.43}{1520}\end{matrix}\right.\)

\(\Rightarrow\) Độ cao cổng cũng là tung độ đỉnh C

\(\Rightarrow h=y_C=c\simeq185,6\left(m\right)\)

25 tháng 10 2019

D tại sao lại là 71 mà k phải là - 71 á bạn?

9 tháng 3 2022

lỗi

9 tháng 3 2022

lỗi